y(0) = 0 Problem 3 dy = 1 – x + x? Consider the initial value problem dx ,0


Please solve (e) part only


y(0) = 0<br>Problem 3<br>dy<br>= 1 – x + x?<br>Consider the initial value problem<br>dx<br>,0 < x < 2.<br>(a) Find the analytic solution to this IVP by integration.<br>(b) Use the Forward Euler algorithm to numerically estimate the true solution at<br>x = 2, using 4 panels of equal width.<br>(c) Use the Forward Euler algorithm to numerically estimate the true solution at<br>x = 2, using N panels of equal width, where N EN is arbitrary. Your estimate for<br>y(2), namely yN, should depend on N.<br>(d) Show that for your estimates from part (c), it is the case that<br>lim YN = y(2)<br>(e) Let x*<br>Forward Euler with N steps causes our numerical estimate for y(x*) to approach the<br>= j/2m for some m e N and some je {0, 1, ..., 2m+1}. Show that using<br>true solution in the limit as N → o.<br>

Extracted text: y(0) = 0 Problem 3 dy = 1 – x + x? Consider the initial value problem dx ,0 < x="">< 2.="" (a)="" find="" the="" analytic="" solution="" to="" this="" ivp="" by="" integration.="" (b)="" use="" the="" forward="" euler="" algorithm="" to="" numerically="" estimate="" the="" true="" solution="" at="" x="2," using="" 4="" panels="" of="" equal="" width.="" (c)="" use="" the="" forward="" euler="" algorithm="" to="" numerically="" estimate="" the="" true="" solution="" at="" x="2," using="" n="" panels="" of="" equal="" width,="" where="" n="" en="" is="" arbitrary.="" your="" estimate="" for="" y(2),="" namely="" yn,="" should="" depend="" on="" n.="" (d)="" show="" that="" for="" your="" estimates="" from="" part="" (c),="" it="" is="" the="" case="" that="" lim="" yn="y(2)" (e)="" let="" x*="" forward="" euler="" with="" n="" steps="" causes="" our="" numerical="" estimate="" for="" y(x*)="" to="" approach="" the="j/2m" for="" some="" m="" e="" n="" and="" some="" je="" {0,="" 1,="" ...,="" 2m+1}.="" show="" that="" using="" true="" solution="" in="" the="" limit="" as="" n="" →="">

Jun 04, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here