Write Yn − Xnβb n = en − Xn(βb n − β) and express
kYn − Xnβb nk 2 = kenk 2 + (βb n − β) ⊤X ⊤ n Xn(βb n − β) − 2e ⊤ n Cn(βb n − β).
Show that n −1kenk 2 → σ 2 a.s.as n → ∞. Using Problem 2.2.2, we can verified that (βb n − β) ⊤X ⊤ n Xn(βb n − β) = Op(1) so that the third term on the right-hand-side is Op(n 1/2 ).
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here