When the Chips Were Up
During the years when arguments about the effectiveness of strategic trade policy were at their height, advocates of a more interventionist trade policy on the part of the United States often claimed that Japan had prospered by deliberately promoting key industries. By the early 1990s, one example in particular— that of semiconductor chips—had become exhibit A in the case that promoting key industries “works.” Indeed, when author James Fallows published a series of articles in 1994 attacking free trade ideology and alleging the superiority of Japanese-style interventionism, he began with a piece titled “The Parable of the Chips.” By the end of the 1990s, however, the example of semiconductors had come to seem an object lesson in the pitfalls of activist trade policy.
A semiconductor chip is a small piece of silicon on which complex circuits have been etched. As we saw on page 328, the industry began in the United States when the U.S. firm Intel introduced the first microprocessor, the brains of a computer on a chip. Since then, the industry has experienced rapid yet peculiarly predictable technological change: Roughly every 18 months, the number of circuits that can be etched on a chip doubles, a rule known as Moore’s Law. This progress underlies much of the information technology revolution of the last three decades.
Japan broke into the semiconductor market in the late 1970s. The industry was definitely targeted by the Japanese government, which supported a research effort that helped build domestic technological capacity. The sums involved in this subsidy, however, were fairly small. The main component of Japan’s activist trade policy, according to U.S. critics, was tacit protectionism. Although Japan had few formal tariffs or other barriers to imports, U.S. firms found that once Japan was able to manufacture a given type of semiconductor chip, few U.S. products were sold in that country. Critics alleged that there was a tacit understanding by Japanese firms in such industries as consumer electronics, in which Japan was already a leading producer, that they should buy domestic semiconductors, even if the price was higher or the quality lower than that for competing U.S. products. Was this assertion true? The facts of the case are in dispute to this day.
Observers also alleged that the protected Japanese market—if that was indeed what it was—indirectly promoted Japan’s ability to export semiconductors. The argument went like this: Semiconductor production is characterized by a steep learning curve (recall the discussion of dynamic scale economies in Chapter 7). Guaranteed a large domestic market, Japanese semiconductor producers were certain they would be able to work their way down the learning curve, which meant they were willing to invest in new plants that could also produce for export.
It remains unclear to what extent these policies led to Japan’s success in taking a large share of the semiconductor market. Some features of the Japanese industrial system may have given the country a “natural” comparative advantage in semiconductor production, where quality control is a crucial concern. During the 1970s and 1980s, Japanese factories developed a new approach to manufacturing based on, among other things, setting acceptable levels of defects much lower than those that had been standard in the United States.
In any case, by the mid-1980s Japan had surpassed the United States in sales of one type of semiconductor, which was widely regarded as crucial to industry success: random access memories, or RAMs. The argument that RAM production was the key to dominating the whole semiconductor industry rested on the belief that it would yield both strong technological externalities and excess returns. RAMs were the largest-volume form of semiconductors; industry experts asserted that the know-how acquired in RAM production was essential to a nation’s ability to keep up with advancing technology in other semiconductors, such as microprocessors. So it was widely predicted that Japan’s dominance in RAMs would soon translate into dominance in the production of semiconductors generally—and that this supremacy, in turn, would give Japan an advantage in the production of many other goods that used semiconductors.
It was also widely believed that although the manufacture of RAMs had not been a highly profitable business before 1990, it would eventually become an industry characterized by excess returns. The reason was that the number of firms producing RAMs had steadily fallen: In each successive generation of chips, some producers had exited the sector, with no new entrants. Eventually, many observers thought, there would be only two or three highly profitable RAM producers left.
During the decade of the 1990s, however, both justifications for targeting RAMs— technological externalities and excess returns—apparently failed to materialize. On one side, Japan’s lead in RAMs ultimately did not translate into an advantage in other types of semiconductors: For example, American firms retained a secure lead in microprocessors. On the other side, instead of continuing to shrink, the number of RAM producers began to rise again, with the main new entrants from South Korea and other newly industrializing economies. By the end of the 1990s, RAM production was regarded as a “commodity” business: Many people could make RAMs, and there was nothing especially strategic about the sector.
The important lesson seems to be how hard it is to select industries to promote. The semiconductor industry appeared, on its face, to have all the attributes of a sector suitable for activist trade policy. But in the end, it yielded neither strong externalities nor excess returns.