Answer To: We used the `mtcars` data in the lecture notes, and also introduced the $k$-fold cross-validation....
Robert answered on Sep 26 2021
> library(MASS)
> set.seed(2)
> nsim=1000
> n=100
> lambda=0.9
> allridgebeta=matrix(NA,nsim,2)
> for(i in lambda){
+ for(i in 1:nsim)
+ {
+ x=mvrnorm(n,c(0,0),matrix(c(1,0.99,0.99,1),2,2))
+ y=rnorm(n,mean = x[,1]+x[,2])
+ allridgebeta[i,]=solve(t(x)%*%x+lambda*n*diag(2))%*%t(x)%*%y }
+ }
> allridge
Error: object 'allridge' not found
> allridgebeta
[,1] [,2]
[1,] 0.7389524 0.7294337
[2,] 0.7077690 0.7233129
[3,] 0.6920325 0.6835985
[4,] 0.6486345 0.6530556
[5,] 0.6794410 0.6695640
[6,] 0.7051073 0.7004656
[7,] 0.6940947 0.6474362
[8,] 0.7269877 0.7021716
[9,] 0.7116283 0.7273537
[10,] 0.6897933 0.6716877
[11,] 0.6642712 0.6723500
[12,] 0.6862648 0.6720921
[13,] 0.7197306 0.7300141
[14,] 0.7126882 0.6773983
[15,] 0.6848574 0.6933491
[16,] 0.6854437 0.6712318
[17,] 0.6267624 0.6454580
[18,] 0.6877776 0.6793959
[19,] 0.7157528 0.7414439
[20,] 0.6671051 0.6796411
[21,] 0.6557646 0.6652206
[22,] 0.7185531 0.7357587
[23,] 0.7082842 0.7153055
[24,] 0.6580081 0.6378027
[25,] 0.6286690 0.6388322
[26,] 0.6763657 0.6951301
[27,] 0.6732662 0.6609507
[28,] 0.7442778 0.7269747
[29,] 0.6870474 0.6822823
[30,] 0.7414386 0.7347276
[31,] 0.6947309 0.6867296
[32,] 0.7104227 0.6828393
[33,] 0.6826539 0.6954103
[34,] 0.5895557 0.5910012
[35,] 0.7161227 0.6988593
[36,] 0.6784354 0.6672047
[37,] 0.7262887 0.7170657
[38,] 0.6542274 0.6504329
[39,] 0.7941030 0.7847422
[40,] 0.6808163 0.6755186
[41,] 0.6930936 0.6990251
[42,] 0.6712715 0.6501668
[43,] 0.7232006 0.7275698
[44,] 0.6615936 0.6561905
[45,] 0.7662802 0.7457218
[46,] 0.7237270 0.7206266
[47,] 0.6390294 0.6383227
[48,] 0.6723270 0.6843780
[49,] 0.6918943 0.6733999
[50,] 0.6883160 0.6872397
[51,] 0.6871003 0.7055573
[52,] 0.6650362 0.6381830
[53,] 0.6466315 0.6375580
[54,] 0.7226079 0.7464210
[55,] 0.7489416 0.7291950
[56,] 0.6923512 0.7177470
[57,] 0.6736165 0.7285528
[58,] 0.6758865 0.7152195
[59,] 0.7259267 0.7142723
[60,] 0.7230352 0.6754965
[61,] 0.6501280 0.6725631
[62,] 0.6490608 0.6506161
[63,] 0.6818176 0.6847639
[64,] 0.6206999 0.6598768
[65,] 0.7193833 0.7461775
[66,] 0.6707291 0.6449064
[67,] 0.7008421 0.6935624
[68,] 0.6683640 0.6861007
[69,] 0.6659492 0.6845213
[70,] 0.6688520 0.6794082
[71,] 0.6491853 0.6463675
[72,] 0.7159586 0.7042456
[73,] 0.7348803 0.7479636
[74,] 0.6562752 0.6874757
[75,] 0.7176799 0.7120179
[76,] 0.6612925 0.6806900
[77,] 0.7063993 0.7124529
[78,] 0.6962405 0.6870503
[79,] 0.7490764 0.7161758
[80,] 0.6636010 0.6763998
[81,] 0.6946656 0.6685110
[82,] 0.6838478 0.6845294
[83,] 0.6795334 0.6790051
[84,] 0.7330894 0.7293710
[85,] 0.6766380 0.6919856
[86,] 0.7642594 0.7324315
[87,] 0.7592950 0.7538307
[88,] 0.7060697 0.7220847
[89,] 0.6811913 0.7231565
[90,] 0.6624037 0.6587553
[91,] 0.6537901 0.6610349
[92,] 0.7147342 0.7257448
[93,] 0.7226490 0.7437074
[94,] 0.7043543 0.7068494
[95,] 0.6567092 0.6718592
[96,] 0.6620378 0.6642713
[97,] 0.6658794 0.6674918
[98,] 0.6144146 0.6305772
[99,] 0.7134501 0.7020546
[100,] 0.6445555 0.6619028
[101,] 0.6784511 0.6671402
[102,] 0.6832418 0.6891065
[103,] 0.6997761 0.7039386
[104,] 0.6930114 0.6972309
[105,] 0.6710235 0.6676713
[106,] 0.6860930 0.6902883
[107,] 0.6770385 0.6497607
[108,] 0.6914006 0.6900819
[109,] 0.8145281 0.8169119
[110,] 0.7114872 0.7163694
[111,] 0.6614077 0.6437184
[112,] 0.6489671 0.6632859
[113,] 0.6519089 0.6666262
[114,] 0.6788132 0.6838106
[115,] 0.7299828 0.7393066
[116,] 0.6842492 0.7025505
[117,] 0.7074228 0.7195030
[118,] 0.6872104 0.6720514
[119,] 0.7477430 0.7317494
[120,] 0.6279157 0.6314735
[121,] 0.7204059 0.6779059
[122,] 0.7694764 0.7518159
[123,] 0.7124437 0.7277123
[124,] 0.6898084 0.6887544
[125,] 0.6351810 0.6531063
[126,] 0.6856369 0.6847211
[127,] 0.7075331 0.6832022
[128,] 0.6567508 0.6660169
[129,] 0.5919217 0.5959365
[130,] 0.7364259 0.6997260
[131,] 0.6658973 0.6534935
[132,] 0.6123640 0.6149497
[133,] 0.6946630 0.7047923
[134,] 0.6869406 0.6481854
[135,] 0.6444343 0.6322343
[136,] 0.6668394 0.6849088
[137,] 0.7519278 0.7257369
[138,] 0.6743340 0.6666009
[139,] 0.7933577 0.8009690
[140,] 0.7058471 0.7394899
[141,] 0.7462868 0.7253455
[142,] 0.6464666 0.6290356
[143,] 0.7212719 0.7042940
[144,] 0.7292913 0.7335335
[145,] 0.6180142 0.6465725
[146,] 0.6303513 0.6397933
[147,] 0.6197922 0.5860371
[148,] 0.6397047 0.6553883
[149,] 0.6827134 0.6830068
[150,] 0.6417920 0.6401584
[151,] 0.6342336 0.6155749
[152,] 0.6692087 0.6646812
[153,] 0.6198626 0.6231652
[154,] 0.7125273 0.7025529
[155,] 0.6858071 0.6834789
[156,] 0.6181276 0.6278842
[157,] 0.6509586 0.6472210
[158,] 0.6385507 0.6586909
[159,] 0.7087213 0.7095249
[160,] 0.6836741 0.6845208
[161,] 0.7516262 0.7658949
[162,] 0.6949414 0.7321509
[163,] 0.6563652 0.6357689
[164,] 0.6457708 0.6677397
[165,] 0.7304504 0.7024972
[166,] 0.6980177 0.7031083
[167,] 0.6563077 0.6674934
[168,] 0.6833228 0.6702808
[169,] 0.6774816 0.6768391
[170,] 0.6081640 0.6227935
[171,] 0.6583614 0.6682111
[172,] 0.7108753 0.7286042
[173,] 0.6851565 0.6852504
[174,] 0.7181315 0.7277144
[175,] 0.6301477 0.6365511
[176,] 0.6478784 0.6421675
[177,] 0.6814620 0.6793399
[178,] 0.7017001 0.7004576
[179,] 0.7199283 0.7192826
[180,] 0.7312182 0.7300593
[181,] 0.7112028 0.7386449
[182,] 0.6532713 0.6353015
[183,] 0.6526045 0.6638799
[184,] 0.6537434 0.6335062
[185,] 0.6524831 0.6622835
[186,] 0.7471322 0.7316105
[187,] 0.6473737 0.6419769
[188,] 0.6533374 0.6593799
[189,] 0.7280034 0.7106427
[190,] 0.7120298 0.7066254
[191,] 0.6606219 0.6087123
[192,] 0.6873505 0.6928968
[193,] 0.6071935 0.6046323
[194,] 0.6512521 0.6574918
[195,] 0.7463697 0.7457380
[196,] 0.6949842 0.7091577
[197,] 0.6886831 0.6710035
[198,] 0.6385254 0.6252832
[199,] 0.7001493 0.7060116
[200,] 0.7419171 0.7261673
[201,] 0.6528970 0.6813738
[202,] 0.6564823 0.6632605
[203,] 0.6278699 0.6614065
[204,] 0.6237987 0.6024441
[205,] 0.6336605 0.6055392
[206,] 0.6876407 0.6808091
[207,] 0.6300581 0.6572785
[208,] 0.7312763 0.7150187
[209,] 0.6775512 0.6739138
[210,] 0.6988106 0.7075290
[211,] 0.6250965 0.6098240
[212,] 0.6979451 0.7299821
[213,] 0.6461386 0.6377946
[214,] 0.5865553 0.5851633
[215,] 0.7409691 0.7425174
[216,] 0.6799459 0.6773195
[217,] 0.5389710 0.5697125
[218,] 0.7307889 0.7172438
[219,] 0.7018655 0.6785799
[220,] 0.6279856 0.6362603
[221,] 0.7053955 0.6811361
[222,] 0.6919720 0.7283655
[223,] 0.6477783 0.6779867
[224,] 0.6617265 0.6862306
[225,] 0.7206971 0.7093053
[226,] 0.7219330 0.7237765
[227,] 0.6375829 0.6553047
[228,] 0.7062510 0.6889642
[229,] 0.6660188 0.6753649
[230,] 0.7174401 0.7167230
[231,] 0.7187021 0.7132055
[232,] 0.7593531 0.7314633
[233,] 0.7199457 0.6879721
[234,] 0.6788201 0.6625146
[235,] 0.6029288 0.5856765
[236,] 0.6868495 0.6991774
[237,] 0.6936096 0.6910464
[238,] 0.7713016 0.7932740
[239,] 0.7447803 0.7347986
[240,] 0.6840325 0.6909074
[241,] 0.7387234 0.7424752
[242,] 0.7261938 0.7285364
[243,] 0.6612881 0.6803125
[244,] 0.6188530 0.6169640
[245,] 0.6171705 0.6467993
[246,] 0.7199133 0.7381158
[247,] 0.7077606 0.7072651
[248,] 0.6694994 0.6799761
[249,] 0.6812093 0.6726553
[250,] 0.7283383 0.7298808
[251,] 0.6669434 0.6689352
[252,] 0.7188229 0.7112304
[253,] 0.6495821 0.6662271
[254,] 0.6887372 0.6962643
[255,] 0.6919647 0.7060185
[256,] 0.7650472 0.7499832
[257,] 0.6821010 0.7054979
[258,] 0.6933143 0.7023347
[259,] 0.7056755 0.7337125
[260,] 0.7311842 0.7293319
[261,] 0.6438946 0.6536721
[262,] 0.7592535 0.7544752
[263,] 0.6610529 0.6443233
[264,] 0.5631444 0.5800831
[265,] 0.7349365 0.7402307
[266,] 0.6453862 0.6503205
[267,] 0.5695209 0.5779737
[268,] 0.6642748 0.6468120
[269,] 0.6256396 0.6264312
[270,] 0.7143611 0.7006545
[271,] 0.6340024 0.6319773
[272,] 0.6520180 0.6755251
[273,] 0.7278351 0.6945972
[274,] 0.6890067 0.6765668
[275,] 0.6410469 0.6391050
[276,] 0.7286407 0.7102486
[277,] 0.6637165 0.6149366
[278,] 0.7312348 0.7239802
[279,] 0.6090046 0.6016778
[280,] 0.7369604 0.7593658
[281,] 0.7042370 0.6957684
[282,] 0.6890935 0.7060871
[283,] 0.6762016 0.7078844
[284,] 0.7111281 0.6977876
[285,] 0.7009408 0.6804474
[286,] 0.6656447 0.6952991
[287,] 0.6851282 0.6991748
[288,] 0.6468834 0.6440928
[289,] 0.7008427 0.7022022
[290,] 0.6325470 0.6444935
[291,] 0.7837527 0.7806910
[292,] 0.7032622 0.7075240
[293,] 0.6942236 0.7272430
[294,] 0.6624292 0.6768260
[295,] 0.6511714 0.6496781
[296,] 0.6631962...