Using Java, modify the doubly linked list class presented below so it works with generic types. Add the following methods drawn from the java.util.List interface: • void clear(): remove all elements...



Using Java, modify the doubly linked list class presented below so it works with generic types. Add the following methods drawn from the java.util.List interface:

• void clear(): remove all elements from the list.
• E get(int index): return the element at position index in the list.
• E set(int index, E element): replace the element at the specified position with the specified element and return the previous element.



Test your generic linked list class by processing a list of numbers of type double.


====================================
/**
The DLinkedList class implements a doubly Linked list.

*/
class DLinkedList {
/**
The Node class stores a list element and a reference to the next node.
*/
private class Node
{
String value; // Value of a list element
Node next; // Next node in the list
Node prev; // Previous element in the list


/**
Constructor.

@param val The element to be stored in the node.
@param n The reference to the successor node.
@param p The reference to the predecessor node.
*/

Node(String val, Node n, Node p)
{
value = val;
next = n;
prev = p;
}

/**
Constructor.

@param val The element to be stored in the node.
*/

Node(String val)
{
// Just call the other (sister) constructor
this(val, null, null);

}
}
private Node first; // Head of the list
private Node last; // Last element on the list



/**

Constructor.
*/
public DLinkedList()
{
first = null;
last = null;

}


/**
The isEmpty method checks to see if the list is empty.
@return true if list is empty, false otherwise.
*/


public boolean isEmpty()
{

return first == null;
}


/**
The size method returns the length of the list.
@return The number of elements in the list.
*/


public int size()
{
int count = 0;
Node p = first;

while (p != null)
{
// There is an element at p
count ++;
p = p.next;
}
return count;
}


/**
The add method adds to the end of the list.
@param e The value to add.

*/


public void add(String e)
{
if (isEmpty())

{
last = new Node(e);
first = last;
}
else
{
// Add to end of existing list
last.next = new Node(e, null, last);
last = last.next;

}

}


/**
This add method adds an element at an index.
@param e The element to add to the list.
@param index The index at which to add.
@exception IndexOutOfBoundsException When the index is out of bounds.
*/


public void add(int index, String e)
{
if (index < 0="" ||="" index=""> size())

{
String message = String.valueOf(index);
throw new IndexOutOfBoundsException(message);
}


// Index is at least 0
if (index == 0)
{
// New element goes at beginning
Node p = first; // Old first
first = new Node(e, p, null);
if (p != null)
p.prev = first;

if (last == null)
last = first;
return;
}


// pred will point to the predecessor
// of the new node.
Node pred = first;

for (int k = 1; k <= index="" -="" 1;="">

{
pred = pred.next;

}


// Splice in a node with the new element
// We want to go from pred-- succ to

// pred--middle--succ
Node succ = pred.next;
Node middle = new Node(e, succ, pred);
pred.next = middle;

if (succ == null)

last = middle;

else

succ.prev = middle;

}


/**
The toString method computes the string representation of the list.
@return The string representation of the linked list.
*/


public String toString()
{
StringBuilder strBuilder = new StringBuilder();


// Use p to walk down the linked list
Node p = first;
while (p != null)
{
strBuilder.append(p.value + "\n");

p = p.next;
}

return strBuilder.toString();

}


/**
The remove method removes the element at a given position.
@param index The position of the element to remove.

@return The element removed.

@exception IndexOutOfBoundsException When index is out of bounds.

*/


public String remove(int index)
{
if (index < 0="" ||="" index="">= size())

{
String message = String.valueOf(index);
throw new IndexOutOfBoundsException(message);
}



// Locate the node targeted for removal
Node target = first;

for (int k = 1; k <= index;="">
target = target.next;


String element = target.value; // Element to return
Node pred = target.prev; // Node before the target
Node succ = target.next; // Node after the target


// Route forward and back pointers around
// the node to be removed
if (pred == null)

first = succ;
else
pred.next = succ;


if (succ == null)
last = pred;
else
succ.prev = pred;
return element;

}


/**
The remove method removes an element from the list.
@param element The element to remove.
@return true if the element was removed, false otherwise.
*/


public boolean remove(String element)
{
if (isEmpty())

return false;



// Locate the node targeted for removal
Node target = first;

while (target != null

&& !element.equals(target.value))
target = target.next;


if (target == null)
return false;



Node pred = target.prev; // Node before the target
Node succ = target.next; // Node after the target


// Route forward and back pointers around
// the node to be removed
if (pred == null)

first = succ;
else
pred.next = succ;


if (succ == null)
last = pred;
else
succ.prev = pred;

return true;

}


public static void main(String [] args)
{
DLinkedList ll = new DLinkedList();
ll.add("Amy");
ll.add("Bob");
ll.add(0, "Al");
ll.add(2, "Beth");
ll.add(4, "Carol");
System.out.println("The elements of the list are:");
System.out.println(ll);
}
}

Jun 06, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here