Use the graph to estimate the specified limit. 1) Find lim x(-1)- f(x) and lim x(-1)+ f(x) 1) A) -7; -5 B) -5; -2 C) -2; -7 D) -7; -2 2) Find lim x??/2)- f(x) and lim x??/2)+ f(x) 2) A) 2; 6 B) ?;...

1 answer below »
Use the graph to estimate the specified limit. 1) Find lim x(-1)- f(x) and lim x(-1)+ f(x) 1) A) -7; -5 B) -5; -2 C) -2; -7 D) -7; -2 2) Find lim x??/2)- f(x) and lim x??/2)+ f(x) 2) A) 2; 6 B) ?; ? C) ? 2 ; ? 2 D) 6; 2 1 Determine the limit by sketching an appropriate graph. 3) lim x  6+ f(x), where f(x) = -5x + 3 for x < 6="" 3x="" +="" 4="" for="" x="" l="" 6="" 3)="" a)="" -27="" b)="" 4="" c)="" 22="" d)="" 5="" find="" the="" limit.="" 4)="" lim="" h0+="" h2="" +="" 5h="" +="" 5="" -="" 5="" h="" 4)="" a)="" does="" not="" exist="" b)="" 5="" 2="" 5="" c)="" 5="" 10="" d)="" 1="" 2="" find="" the="" limit="" using="" lim="" x="0" sinx="" x="1." 5)="" lim="" x0="" x="" sin="" 3x="" 5)="" a)="" 3="" b)="" does="" not="" exist="" c)="" 1="" d)="" 1="" 3="" 6)="" lim="" x0="" sin="" 4x="" sin="" 5x="" 6)="" a)="" does="" not="" exist="" b)="" 0="" c)="" 5="" 4="" d)="" 4="" 5="" 7)="" lim="" x0="" sin="" x="" cos="" 4x="" x="" +="" x="" cos="" 5x="" 7)="" a)="" 1="" 2="" b)="" 4="" 5="" c)="" does="" not="" exist="" d)="" 0="" 2="" find="" all="" points="" where="" the="" function="" is="" discontinuous.="" 8)="" 8)="" a)="" none="" b)="" x="2" c)="" x="4" d)="" x="4," x="2" 9)="" 9)="" a)="" none="" b)="" x="0" c)="" x="-2," x="0," x="2" d)="" x="-2," x="2" determine="" the="" limit="" by="" sketching="" an="" appropriate="" graph.="" 10)="" lim="" x="" ="" 7-="" f(x),="" where="" f(x)="-3x" -="" 4="" for="" x="">< 7="" 5x="" -="" 3="" for="" x="" l="" 7="" 10)="" a)="" 32="" b)="" -25="" c)="" -3="" d)="" -2="" 3="" 11)="" lim="" x="" ="" -4+="" f(x),="" where="" f(x)="2x" -4="" k="" x="">< 0,="" or="" 0="">< x="" k="" 3="" 2="" x="0" 0="" x="">< -4="" or="" x=""> 3 11) A) -8 B) -0 C) Does not exist D) 6 Find numbers a and b, or k, so that f is continuous at every point. 12) f(x) = x2, ax + b, x + 12, x < -4="" -4="" k="" x="" k="" -3="" x=""> -3 12) A) a = -7, b = 12 B) a = 7, b = -12 C) a = -7, b = -12 D) Impossible 13) f(x) = x2, kx, if x K 3 if x > 3 13) A) k = 1 3 B) k = 9 C) k = 3 D) Impossible Find the limit. 14) lim xgQ -2 + (7/x) 3 - (1/x2) 14) A) - 2 3 B) Q C) 2 3 D) g Q 15) lim xgQ cos 5x x 15) A) 1 B) 0 C) 5 D) g Q Divide numerator and denominator by the highest power of x in the denominator to find the limit. 16) lim xgQ 3 x - 6x - 5 7x + x2/3 + 4 16) A) - 7 6 B) g Q C) - 6 7 D) 0 4 Find the limit. 17) lim x  10- 1 x - 10 17) A) 0 B) Q C) g Q D) -1 18) lim x  -3+ x2 - 8x + 15 x3 - 9x 18) A) g Q B) Does not exist C) 0 D) Q 19) lim xQ x2 + 3x - x2 - 5x 19) A) 4 B) - 1 C) 8 D) does not exist Provide an appropriate response. 20) Let lim x  10 f(x) = -3 and lim x  10 g(x) = -9. Find lim x  10 [f(x) + g(x)]2. 20) A) 144 B) 6 C) 90 D) -12 21) Let lim x  3 f(x) = -9 and lim x  3 g(x) = -4. Find lim x  3 [f(x) · g(x)]. 21) A) 36 B) -4 C) -13 D) 3 22) Let lim x -4 f(x) = 1024. Find lim x -4 log4 f(x). 22) A) 5 B) -4 C) 5 4 D) 625 23) Let lim x  6 f(x) = 2. Find lim x  6 (-3)f(x). 23) A) -3 B) 9 C) 729 D) 2 Find the limit. 24) lim x0 (3 sin x - 1) 24) A) 3 B) 3 - 1 C) 0 D) -1 Find numbers a and b, or k, so that f is continuous at every point. 25) f(x) = x2, kx, if x K 2 if x > 2 25) A) k = 4 B) k = 1 2 C) k = 2 D) Impossible
Answered Same DayDec 20, 2021

Answer To: Use the graph to estimate the specified limit. 1) Find lim x(-1)- f(x) and lim x(-1)+ f(x) 1) A)...

David answered on Dec 20 2021
121 Votes
1) From the graph, we can see that as x approaches -1 from negative side , y becomes -2 and as it
reaches positive side , y becomes -7 C) -2; -7
2) From the graph, we can see that as x approaches π/2 from negative side , y becomes 6 and as it
reaches π/2 positive side , y becomes 2 D) 6; 2
3)
x y
-5 28
-3 18
-1 8
1 -2
3 -12
5 -22
6 -27
6 22
8 28
10 34 -40
-30
-20
-10
0
10
20
30
40
-10 -5 0 5 10 15


C) 3x+4 = 3*6+4 = 22
4) Using L’Hospital’s rule,

√ √



(Ans is option B)
5)




(Ans is option D)
6)


(


) (
...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here