use the following concepts: In the metric space Rn with the usual Euclidean metric, we can define a linear structure by setting
(x1,…., xn
) + ( y1,…., yn
) = (x1
+ y1,…., xn
+ yn
)
And
λ (x1,…., xn
) = (λx1,….,λxn
)
for arbitrary points x = (x1, …, xn) and y = (y1, …, yn) in Rn and for λ ∈
.
Let p ∈
n. Prove that d (x + p, y + p) = d (x, y) for all x, y ∈
n.