Titanic Analysis (Steps 1-15) Dataset:train.csv Provide the code and comments as laid out in the following steps: 1.Load the data from the “train.csv” file into a DataFrame. 2.Display the dimensions...

1 answer below »

Titanic Analysis (Steps 1-15)


Dataset:train.csv


Provide the code and comments as laid out in the following steps:


1.Load the data from the “train.csv” file into a DataFrame.


2.Display the dimensions of the file (so you’ll have a good idea the amount of data you are working with.


3.Display the first 5 rows of data so you can see the column headings and the type of data for each column.


a.Notice that Survived is represented as a 1 or 0


b.Notice that missing data is represented as “NaN”


c.The Survived variable will be the “target” and the other variables will be the “features”


4.Think about some questions that might help you predict who will survive:


a.What do the variables look like?For example, are they numerical or categorical data. If they are numerical, what are their distribution; if they are categorical, how many are they in different categories?


b.Are the numerical variables correlated?


c.Are the distributions of numerical variables the same or different among survived and not survived?Is the survival rate different for different values? For example, were people more likely to survive if they were younger?


d.Are there different survival rates in different categories? For example, did more women survived than man?


5.Look at summary information about your data (total, mean, min, max, freq., unique, etc.)Does this present any more questions for you?Does it lead you to a conclusion yet?


6.Make some histograms of your data (“A picture is worth a thousand words!”)


a.Most of the passengers are around 20 to 30 years old and don't have siblings or relatives with them. A large amount of the tickets sold were less than $50. There are very few tickets sold where the fare was over $500.


7.Make some bar charts for variables with only a few options.


a.Ticket and Cabin have more than 100 variables so don’t do those!


8.To see if the data is correlated, make some Pearson Ranking charts


a.Notice that in the sample code, I have saved this png file.


b.The correlation between the variables is low (1 or -1 is high positive or high negative, 0 is low or no correlation). These results show there is “some” positive correlation but it’s not a high correlation.


9.Use Parallel Coordinates visualization tocompare the distributions of numerical variables between passengers that survived and those that did not survive.


a.That’s a cool chart, isn’t it?!Passengers traveling with siblings on the boat have a higher death rate and passengers who paid a higher fare had a higher survival rate.


10.Use Stack Bar Charts to compare passengers who survived to passengers who didn’t survive based on the other variables.


a.More females survived than men.3rdClass Tickets had a lower survival rate.Also, Embarkation from Southampton port had a lower survival rate.


11.Some of my questions have been answered by seeing the charts but in some ways, looking at this much data has created even more questions.


a.Now it’s time to reduce some of the features so we can concentrate on the things that matter!There features we will get rid of are:"PassengerId", "Name", "Ticket" and "Cabin".(ID doesn’t really give us any useful data, Ticket and Cabin have too many variables.Name might reflect that they are related but we’re keeping the category about siblings (for now).


b.We can also fill in missing values.(Cabin has some missing values but we are dropping that feature.)Age has some missing values so I’ll fill in with the average age.Embarked also has some missing so I’ll the most common.


12.If you go back and look at the histograms of Fare, you’ll see that it is very skewed…many low-cost fares, not very many high cost fares.Log Transformation is a good method to use on highly skewed data.


13.Convert your categorical data into numbers (Sex, PClass, Embark)


14.Training - Split your data into two sets:Training and Testing.


15.Evaluation – Remember, we are trying to predict if a passenger has survived or not so this is a classification problem.There are many algorithms that could be used but we’re going to use logistic regression.


a.Metrics for the evaluation:


i.Confusion Matrix (you should get 84% - pretty good)


ii.Precision, Recall & F1 score (all 3 were very good)


iii.ROC curve (the dotted line is the randomly guessed so anything above that is good metric)



Format:The completed task must bein Jupyter Notebook with displayed results.


Answered Same DayOct 02, 2021

Answer To: Titanic Analysis (Steps 1-15) Dataset:train.csv Provide the code and comments as laid out in the...

Ximi answered on Oct 05 2021
155 Votes
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"_cell_guid": "e4a1cf77-b695-4ca0-9653-6c41ce2393d8",
"_uuid": "ca91678a9dc8cc103a7fbf799a5d903a011334ef"
},
"source": [
"## Some Background Information\n",
"\n",
"\n",
"**The sinking of the RMS Titanic in the early morning of 15 April 1912, four days into the ship's maiden voyage from Southampton to New York City, was one of the deadliest peacetime maritime disasters in history, killing more than 1,500 people. The largest passenger liner in service at the time, Titanic had an estimated 2,224 people on board when she struck an iceberg in the North Atlantic. The ship had received six warnings of sea ice but was travelling at near maximum speed when the lookouts sighted the iceberg. Unable to turn quickly enough, the ship suffered a glancing blow that buckled the starboard (right) side and opened five of sixteen compartments to the sea. The disaster caused widespread outrage over the lack of lifeboats, lax regulations, and the unequal treatment of the three passenger classes during the evacuation. Inquiries recommended sweeping changes to maritime regulations, leading to the International Convention for the Safety of Life at Sea (1914), which continues to govern maritime safety.** \n",
"*from Wikipedia*"
]
},
{
"cell_type": "markdown",
"metadata": {
"_cell_guid": "998b2a03-c60e-4fd6-9f69-784de6e6c9b8",
"_uuid": "d3086cb02907affe5a674b54e4baaedd632482c7"
},
"source": [
"**Imports**"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"_cell_guid": "872b97b2-56fe-4644-a11f-afb00f422169",
"_uuid": "efb595c75201cdb2a53388dc152a8e526e1b921a"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"gender_submission.csv\n",
"test.csv\n",
"train.csv\n",
"\n"
]
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"%matplotlib inline\n",
"sns.set()\n",
"\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\", category=FutureWarning)\n",
"#warnings.filterwarnings(\"ignore\", category=DeprecationWarning)\n",
"#warnings.filterwarnings(\"ignore\")\n",
"\n",
"from subprocess import check_output\n",
"print(check_output([\"ls\", \"../input\"]).decode(\"utf8\"))\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"_uuid": "0dabb93c5c6480e69cbc93616932445e614f506f"
},
"outputs": [
{
"data": {
"text/plain": [
"'0.9.0'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sns.__version__"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"_cell_guid": "080fb327-390d-4124-b287-a561d050fe7e",
"_uuid": "0333d5086a63e3870708e7ba7a540d036c53544e"
},
"outputs": [],
"source": [
"df_train = pd.read_csv(\"../input/train.csv\")\n",
"df_test = pd.read_csv(\"../input/test.csv\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"_cell_guid": "6c7d2500-95b1-4057-98f7-39100e8a6d7f",
"_uuid": "13fd8422db7a1ceae9ebb002df452e8293a9ab0c"
},
"source": [
"## Part 1: Exploratory Data Analysis"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"_cell_guid": "17a3c0a2-3aad-47f4-be6f-e8756bddf080",
"_uuid": "48a2091edbeacc9c23dad6bc0c64d0302d01b87b"
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
\n",
"
"
],
"text/plain": [
" PassengerId Survived Pclass ... Fare Cabin Embarked\n",
"0 1 0 3 ... 7.2500 NaN S\n",
"1 2 1 1 ... 71.2833 C85 C\n",
"2 3 1 3 ... 7.9250 NaN S\n",
"3 4 1 1 ... 53.1000 C123 S\n",
"4 5 0 3 ... 8.0500 NaN S\n",
"\n",
"[5 rows x 12 columns]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_train.head()"
]
},
{
"cell_type": "markdown",
"metadata": {
"_cell_guid": "4e0c12ed-f9a7-4a2d-b33c-8e139c6387d1",
"_uuid": "5f7bf32c6766cffd95125d01d24ccb7204611f45"
},
"source": [
"df_train has 891 entries, some values for Cabin and Age are missing"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"_cell_guid": "60e47bc5-0749-41ee-979e-58ba2e1d5ce8",
"_uuid": "d3edd77b588d7589154499820fa571a5d7b62035"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 891 entries, 0 to 890\n",
"Data columns (total 12 columns):\n",
"PassengerId 891 non-null int64\n",
"Survived 891 non-null int64\n",
"Pclass 891 non-null int64\n",
"Name 891 non-null object\n",
"Sex 891 non-null object\n",
"Age 714 non-null float64\n",
"SibSp 891 non-null int64\n",
"Parch 891 non-null int64\n",
"Ticket 891 non-null object\n",
"Fare 891 non-null float64\n",
"Cabin 204 non-null object\n",
"Embarked 889 non-null object\n",
"dtypes: float64(2), int64(5), object(5)\n",
"memory usage: 83.6+ KB\n"
]
}
],
"source": [
"df_train.info()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"_cell_guid": "cf04a11c-fada-476a-bf82-437f8f302ca6",
"_uuid": "e3c717b8911229098b77175804a0c05c4e8b5828"
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
PassengerIdPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
08923Kelly, Mr. Jamesmale34.5003309117.8292NaNQ
18933Wilkes, Mrs. James (Ellen Needs)female47.0103632727.0000NaNS
28942Myles, Mr. Thomas Francismale62.0002402769.6875NaNQ
38953Wirz, Mr. Albertmale27.0003151548.6625NaNS
48963Hirvonen, Mrs. Alexander (Helga E Lindqvist)female22.011310129812.2875NaNS
\n",
"
"
],
"text/plain": [
" PassengerId Pclass ... Cabin Embarked\n",
"0 892 3 ... NaN Q\n",
"1 893 3 ... NaN S\n",
"2 894 2 ... NaN Q\n",
"3 895 3 ... NaN S\n",
"4 896 3 ... NaN S\n",
"\n",
"[5 rows x 11 columns]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_test.head()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"_cell_guid": "f0e70763-8b81-401a-92fe-f195ef37b4bc",
"_uuid": "5d34539fd29d18787e98dfae48ac154efd73d55a"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 418 entries, 0 to 417\n",
"Data columns (total 11 columns):\n",
"PassengerId 418 non-null int64\n",
"Pclass 418 non-null int64\n",
"Name 418 non-null object\n",
"Sex 418 non-null object\n",
"Age 332 non-null float64\n",
"SibSp 418 non-null int64\n",
"Parch 418 non-null int64\n",
"Ticket 418 non-null object\n",
"Fare 417 non-null float64\n",
"Cabin 91 non-null object\n",
"Embarked 418 non-null object\n",
"dtypes: float64(2), int64(4), object(5)\n",
"memory usage: 36.0+ KB\n"
]
}
],
"source": [
"df_test.info()"
]
},
{
"cell_type": "markdown",
"metadata": {
"_cell_guid": "bb18628a-d896-4907-9761-aab93999b0b6",
"_uuid": "b6062b11e45d9f45663bcdbb136eb2a4aa525742"
},
"source": [
"Also in df_test some values for Age and many values for Cabin are missing"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"_cell_guid": "0e3973cb-3dee-4dab-9c7f-f4902f62c360",
"_uuid": "b0c4e63035e9517722d8dbf8b2bc984410456181"
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
PassengerIdSurvivedPclassAgeSibSpParchFare
count891.000000891.000000891.000000714.000000891.000000891.000000891.000000
mean446.0000000.3838382.30864229.6991180.5230080.38159432.204208
std257.3538420.4865920.83607114.5264971.1027430.80605749.693429
min1.0000000.0000001.0000000.4200000.0000000.0000000.000000
25%223.5000000.0000002.00000020.1250000.0000000.0000007.910400
50%446.0000000.0000003.00000028.0000000.0000000.00000014.454200
75%668.5000001.0000003.00000038.0000001.0000000.00000031.000000
max891.0000001.0000003.00000080.0000008.0000006.000000512.329200
\n",
"
"
],
"text/plain": [
" PassengerId Survived ... Parch Fare\n",
"count 891.000000 891.000000 ... 891.000000 891.000000\n",
"mean 446.000000 0.383838 ... 0.381594 32.204208\n",
"std 257.353842 0.486592 ... 0.806057 49.693429\n",
"min 1.000000 0.000000 ... 0.000000 0.000000\n",
"25% 223.500000 0.000000 ... 0.000000 7.910400\n",
"50% 446.000000 0.000000 ... 0.000000 14.454200\n",
"75% 668.500000 1.000000 ... 0.000000 31.000000\n",
"max 891.000000 1.000000 ... 6.000000 512.329200\n",
"\n",
"[8 rows x 7 columns]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_train.describe()"
]
},
{
"cell_type": "markdown",
"metadata": {
"_cell_guid": "e0e5b43e-3949-420e-960f-697abbec91fb",
"_uuid": "10e0b721ca4d05176207e5bfaab3932555271f2b"
},
"source": [
"Comparing distribution of features in df_train and df_test, Pclass and Age seem very similar, distributions for SibSo, Parch and Fare only slightly different"
]
},
{
"cell
_type": "code",
"execution_count": 9,
"metadata": {
"_cell_guid": "0dc4a65f-3460-4fa0-8d0a-0649b679ed01",
"_uuid": "485bc69da85d5596708f385ca477783581df5231"
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
PassengerIdPclassAgeSibSpParchFare
count418.000000418.000000332.000000418.000000418.000000417.000000
mean1100.5000002.26555030.2725900.4473680.39234435.627188
std120.8104580.84183814.1812090.8967600.98142955.907576
min892.0000001.0000000.1700000.0000000.0000000.000000
25%996.2500001.00000021.0000000.0000000.0000007.895800
50%1100.5000003.00000027.0000000.0000000.00000014.454200
75%1204.7500003.00000039.0000001.0000000.00000031.500000
max1309.0000003.00000076.0000008.0000009.000000512.329200
\n",
"
"
],
"text/plain": [
" PassengerId Pclass ... Parch Fare\n",
"count 418.000000 418.000000 ... 418.000000 417.000000\n",
"mean 1100.500000 2.265550 ... 0.392344 35.627188\n",
"std 120.810458 0.841838 ... 0.981429 55.907576\n",
"min 892.000000 1.000000 ... 0.000000 0.000000\n",
"25% 996.250000 1.000000 ... 0.000000 7.895800\n",
"50% 1100.500000 3.000000 ... 0.000000 14.454200\n",
"75% 1204.750000 3.000000 ... 0.000000 31.500000\n",
"max 1309.000000 3.000000 ... 9.000000 512.329200\n",
"\n",
"[8 rows x 6 columns]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_test.describe()"
]
},
{
"cell_type": "markdown",
"metadata": {
"_cell_guid": "94c7f3de-746d-44cb-9a9d-43f32527948c",
"_uuid": "20287febf1b25ddf9eccfbb88e363bdb80f3d958"
},
"source": [
"**Of all passengers in df_train, how many survived, how many died ?** "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"_cell_guid": "d2bd2723-3a68-4e94-a629-7a0fca99cb2a",
"_uuid": "3fe99f565401dae73cfecd3fb2cf8dc201119b36"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAESCAYAAADXMlMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAEPpJREFUeJzt3X2QXXV9x/H37gaSAIGGZVGeH6r5WmlaDSBpB2x1sPRhoLVWpmCAdsZWkEFLq/hQUKzFYZBxFIlNqnYMRlLLOFBKnbE4rYWU0vI4Dg9+QQohQCrLQiFBEyV3+8c9C5ed3N1789u992zyfs3s3D2/3zn3fGFu7mfP+Z3zOwPj4+NIkrSzBvtdgCRpbjNIJElFDBJJUhGDRJJUxCCRJBUxSCRJRQwSSVIRg0SSVMQgkSQVMUgkSUUMEklSkXn9LmAWzQeOBzYB2/tciyTNFUPAQcAdwLZONtiVg+R44NZ+FyFJc9RJwPpOVtyVg2QTwHPPvUij4QzHktSJwcEBFi/eG6rv0E7sykGyHaDRGDdIJKl7HQ8JONguSSpikEiSihgkkqQiBokkqYhBIkkqYpBIkooYJJKkIrvyfSTFFu27gAXz9+h3GaqZrdt+xuYXtva7DKk2DJIpLJi/B2de9I1+l6GaufaK97AZg0Sa4KktSVIRg0SSVMQgkSQVMUgkSUUMEklSEYNEklTEIJEkFTFIJElFDBJJUhGDRJJUxCCRJBUxSCRJRQwSSVKRns3+GxGPAVurH4CPZOZ3ImI5sBpYCDwGrMjMp6tt2vZJkuqh10ckf5CZb6p+vhMRg8Ba4PzMXALcAlwOMFWfJKk++n1q61hga2aur5ZXAad30CdJqoleB8k3IuL7EfGliPg54HBgw0RnZj4DDEbE/tP0SZJqopdPSDwpMzdGxHzg88DVwPWzvdPh4X1mexfaDY2MLOp3CVJt9CxIMnNj9botIr4E3Ah8AThiYp2IOABoZOazEfF4u75u9js2toVGY3ynavbLQu2Mjm7udwnSrBgcHOj6D/CenNqKiL0jYr/q9wHgD4F7gbuAhRFxYrXqucB11e9T9UmSaqJXRySvAb4VEUPAEPAA8P7MbETEWcDqiFhAdYkvwFR9kqT66EmQZOb/AG9u03cbsLTbPklSPfT78l9J0hxnkEiSihgkkqQiBokkqYhBIkkqYpBIkooYJJKkIgaJJKmIQSJJKmKQSJKKGCSSpCIGiSSpiEEiSSpikEiSihgkkqQiBokkqYhBIkkqYpBIkooYJJKkIgaJJKmIQSJJKmKQSJKKGCSSpCIGiSSpiEEiSSpikEiSihgkkqQiBokkqYhBIkkqMq/XO4yITwKXAksz876IWA6sBhYCjwErMvPpat22fZKkeujpEUlELAOWAxuq5UFgLXB+Zi4BbgEun65PklQfPQuSiJgPrATOa2k+Ftiameur5VXA6R30SZJqopentv4KWJuZj0XERNvhVEcnAJn5TEQMRsT+U/Vl5rOd7nR4eJ+ZqV5qMTKyqN8lSLXRkyCJiF8BjgM+2ov9tRob20KjMb5T2/ploXZGRzf3uwRpVgwODnT9B3ivTm39GvALwKMR8RhwKPAd4HXAERMrRcQBQKM64nh8ij5JUk30JEgy8/LMPDgzj8zMI4EngFOAzwILI+LEatVzgeuq3++aok+SVBN9vY8kMxvAWcDfRMTDNI9cPjpdnySpPnp+HwlAdVQy8fttwNI267XtkyTVg3e2S5KKGCSSpCIGiSSpiEEiSSpikEiSihgkkqQiBokkqYhBIkkqYpBIkooYJJKkIgaJJKmIQSJJKmKQSJKKGCSSpCIGiSSpiEEiSSrSlwdbSSq3eL89mbfn/H6XoZp56afbeO75n/Z0nwaJNEfN23M+d13x3n6XoZo59qKvAL0NEk9tSZKKGCSSpCIGiSSpiEEiSSrScZBExIfatP/5zJUjSZprujki+USb9otnohBJ0tw07eW/EfH26tehiHgbMNDSfTSweTYKkyTNDZ3cR/LV6nUB8Hct7ePA/wIXzHRRkqS5Y9ogycyjACLimsw8e/ZLkiTNJR3f2d4aIhExOKmvMZNFSZLmjo6DJCKWASuBX6J5mgua4yXjwFAH298AHAU0gC3ABZl5b0QsAdYAw8AYcHZmPlxt07ZPklQP3Vy1tQb4N+A4moPsR9MMhqM73P6czPzlzHwzcCWvjLesAlZm5hKaQbW6ZZup+iRJNdDNpI1HAH+ZmeM7s6PMfL5lcT+gEREHAsuAd1Tt64CrI2KE5tHODvsyc3RnapAkzbxujkiuB36jZGcR8ZWIeBy4DDgHOAx4MjO3A1SvT1XtU/VJkmqimyOSBcD1EbGe5mW/L+v0aq7MfC9ARJwFfBa4pIv975Th4X1mexfaDY2MLOp3CVJbvf58dhMkD1Q/xTLz6xHxt8ATwCERMZSZ2yNiCDgY2Ejz1Fa7vo6NjW2h0dips3F+Wait0dH+34fr51PtlHw+BwcHuv4DvJvLfz/VdUWViNgHWJyZG6vlU4FngaeBe4EzgLXV6z0TYyAR0bZPklQP3Vz++/Z2fZn5r9NsvjdwXUTsDWynGSKnZuZ4RJwLrImITwDPAa2nyabqkyTVQDentr46aXkE2JPm6akpLwHOzB8By9v0/QA4ods+SVI9dHNq66jW5WrM4mKctFGSdms7/WCr6nLcy4CLZq4cSdJcU/qExHfQnPJEkrSb6mawfSPNebUm7EXz3pL3z3RRkqS5o5vB9hWTll8EHsrMF2awHknSHNPNYPu/w8tTyL8G+JHTx0uSOh4jiYhFEXEN8BPgSeAnEbEmIvabteokSbXXzWD7F2neWLgUWFi97gVcNQt1SZLmiG7GSH4TODozf1wtPxQRfww8MvNlSZLmim6OSLbSvJu91QHAtpkrR5I013RzRPIV4OaI+BywgeaDri4EvjwbhUmS5oZuguQymoPs76E5nftTwBWZOXkOLknSbqSbU1tfADIzT87MN2bmycCDEfH5WapNkjQHdBMkZwB3Tmq7Czhz5sqRJM013QTJODA0qW2oy/eQJO1iugmBW4FPV3e2T9zhfmnVLknaTXUz2P5B4CZgU0RsAA4HNgGnzkZhkqS5oZu5tp6IiGXAW4DDgI3AfzvfliTt3ro5IqEKjdurH0mSHCiXJJUxSCRJRQwSSVIRg0SSVMQgkSQVMUgkSUUMEklSEYNEklTEIJEkFTFIJElFupoiZWdFxDDwdeDngZ8CDwPvy8zRiFgOrAYWAo8BKzLz6Wq7tn2SpHro1RHJOM3H8kZmLgUeAS6vpqJfC5yfmUuAW4DL4eVp6nfYJ0mqj54ESWY+m5nfa2m6HTgCOBbYmpnrq/ZVwOnV71P1SZJqoudjJNWRxnnAjTSfabJhoi8znwEGI2L/afokSTXRkzGSSb4IbAGuBt452zsbHt5ntneh3dDIyKJ+lyC11evPZ0+DJCKuBF4PnJqZjYh4nOYpron+A4BGZj47VV83+xwb20KjMb5T9fploXZGRzf3uwQ/n2qr5PM5ODjQ9R/gPTu1FRGfoTnu8XuZua1qvgtYGBEnVsvnAtd10CdJqoleXf57DPAx4CHgtogAeDQz3xkRZwGrI2IB1SW+0HwaY7s+SVJ99CRIMvN+YKBN323A0m77JEn14J3tkqQiBokkqYhBIkkqYpBIkooYJJKkIgaJJKmIQSJJKmKQSJKKGCSSpCIGiSSpiEEiSSpikEiSihgkkqQiBokkqYhBIkkqYpBIkooYJJKkIgaJJKmIQSJJKmKQSJKKGCSSpCIGiSSpiEEiSSpikEiSihgkkqQiBokkqYhBIkkqYpBIkooYJJKkIvN6sZOIuBJ4F3AksDQz76valwBrgGFgDDg7Mx+erk+SVB+9OiK5AXgrsGFS+ypgZWYuAVYCqzvskyTVRE+CJDPXZ+bG1raIOBBYBqyrmtYByyJiZKq+XtQrSepcP8dIDgOezMztANXrU1X7VH2SpBrpyRhJPw0P79PvErQLGhlZ1O8SpLZ6/fnsZ5BsBA6JiKHM3B4RQ8DBVfvAFH1dGRvbQqMxvlMF+mWhdkZHN/e7BD+faqvk8zk4OND1H+B9O7WVmU8D9wJnVE1nAPdk5uhUfb2vVJI0lZ4ESURcFRFPAIcC342I+6uuc4ELIuIh4IJqmQ76JEk10ZNTW5n5AeADO2j/AXBCm23a9kmS6sM72yVJRQwSSVIRg0SSVMQgkSQVMUgkSUUMEklSEYNEklTEIJEkFTFIJElFDBJJUhGDRJJUxCCRJBUxSCRJRQwSSVIRg0SSVMQgkSQVMUgkSUUMEklSEYNEklTEIJEkFTFIJElFDBJJUhGDRJJUxCCRJBUxSCRJRQwSSVIRg0SSVMQgkSQVMUgkSUXm9buA6UTEEmANMAyMAWdn5sP9rUqSNGEuHJGsAlZm5hJgJbC6z/VIklrU+ogkIg4ElgHvqJrWAVdHxEhmjk6z+RDA4OBAUQ0HLN67aHvtmko/VzNlz32H+12Caqjk89my7VCn2wyMj4/v9A5nW0QcC1yTmce0tD0ArMjMu6fZ/ETg1tmsT5J2YScB6ztZsdZHJIXuoPk/YhOwvc+1SNJcMQQcRPM7tCN1D5KNwCERMZSZ2yNiCDi4ap/ONjpMU0nSqzzSzcq1HmzPzKeBe4EzqqYzgHs6GB+RJPVIrcdIACLiDTQv/10MPEfz8t/sb1WSpAm1DxJJUr3V+tSWJKn+DBJJUhGDRJJUxCCRJBWp+30kqgEnzlRdRcSVwLuAI4GlmXlffyvaPXlEok44cabq6gbgrcCGfheyOzNINKWWiTPXVU3rgGURMdK/qqSmzFyfmZ3MdKFZZJBoOocBT2bmdoDq9amqXZIMEklSGYNE03l54kyALifOlLQbMEg0JSfOlDQd59rStJw4U3UVEVcBvw+8FngGGGt9EJ56wyCRJBXx1JYkqYhBIkkqYpBIkooYJJKkIgaJJKmIQSL1SUSsiohLZuF9L42ItTP9vlI7TiMvTRIRJwJXAMcA24EHgT/LzDtmcj+Zee5Mvp/ULwaJ1CIi9gVuAs4D/gHYEzgJ2Nbl+wwAA5nZmPEipZoxSKRXWwKQmRPT5v8E+BdonjICXpeZK6rlI4FHgT0y86WI+B7wH8Cv05x6/9KIeHdmHjfx5hFxIfC2zDwtIr4GPJGZF0fEg8CHM/Omar15wCbglMy8OyKWA58D3kjz2RsfzMzvVeseBXyt2uftgLMOqKccI5Fe7SFge0SsiYjfiojFXW5/FvCnwCKaDwSLiHh9S/+ZwLU72G4dr8xnBnAK8EwVIocA/wz8NbA/8CHgWy3PhLkWuAs4APg0cE6XNUtFDBKpRWa+AJwIjANfBkYj4saIeE2Hb/G1zLw/M1/KzOeBf6QKiCpQ3gDcuIPtrgVOi4i9quUzeeVhYiuAb2fmtzOzkZk3A3cCvx0RhwPHA5dk5rbMvAX4p27/u6USBok0SWY+mJl/lJmHAr9Ic9r8z3e4+eTp9a/llSONM4EbMvPHO9jnD2kO6p9ahclpvHLkcgTw7oj4v4kfmmF3UFXbc5n5Ysvb+dhZ9ZRjJNIUMvMH1VjG+4C7gb1aul+7g00mz4J6MzASEW+iGSgXTrG7idNbg8ADVbhAM5y+npl/MnmDiDgCWBwRe7eEyeE7qEOaNQaJ1KKaMv93gG9m5hMRcRjNL/fbaT6X5SPV6aTngY9N936Z+bOIuA74LM3xjZunWP3vgcuq9VrHUdYCd0TEKcB3gT2A5cAPM3NDRNwJfCoiPg68BTiVHZ8+k2aFp7akV9sMnAD8V0S8SDNA7gP+ohqb+CbwfZqD2zd1+J7XAicD12XmS+1WysxNwH8Cv1rtZ6J9I/C7wMeBUZpHKB/mlX+/Z1Y1Pwt8Erimw7qkGeHzSCRJRTwikSQVMUgkSUUMEklSEYNEklTEIJEkFTFIJElFDBJJUhGDRJJUxCCRJBX5fwe43x4zD2PmAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.countplot(x='Survived', data=df_train);"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"_cell_guid": "b6aabfa1-fd1b-4ad5-9f95-14a7a703d7ee",
"_uuid": "26277b12d89958ad5d03a8636786b920c7d4ba08"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.3838383838383838\n"
]
}
],
"source": [
"print(df_train.Survived.sum()/df_train.Survived.count())"
]
},
{
"cell_type": "markdown",
"metadata": {
"_cell_guid": "1babbbf7-085d-4141-b29a-f9fd8f388e46",
"_uuid": "efa6e3dbb66ca31c8aa1a2e4ec934c00bbf2e411"
},
"source": [
"more people died than survived (38% survived)\n",
"\n",
"-> base model : no survivors\n",
"\n",
"submission : 0.627 accuracy"
]
},
{
"cell_type": "markdown",
"metadata": {
"_uuid": "4d22aef19faa0e9754f27ef26f3b31ec2099f54c"
},
"source": [
"**Uncomment if you want to check this submission**"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"_cell_guid": "c830a8ca-2bb1-496c-807a-c9913dd5d3f2",
"_uuid": "8b4ce14f870115759569ca8d8e60c71907fe2095"
},
"outputs": [],
"source": [
"#df_test['Survived'] = 0\n",
"#df_test[['PassengerId', 'Survived']].to_csv('no_survivors.csv', index=False)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"_uuid": "b43c39397eef7815b8d6d7308750e83c171e0e1c"
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {
"_cell_guid": "d9cd643d-14a4-43e6-8eeb-53fca5e2ffb1",
"_uuid": "fdc97f58b646df5993d1e90ff28abfa2b41b1425"
},
"source": [
"**Sex: Female more likely to survive than male**"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"_cell_guid": "d6dd2033-80b8-44c6-8d91-95a7353552fd",
"_uuid": "1b7ef6637506ba053434c3e0b0b3f0bc0cf4d01d"
},
"outputs": [
{
"data": {
"text/plain": [
"Survived Sex \n",
"0 female 81\n",
" male 468\n",
"1 female 233\n",
" male 109\n",
"Name: Survived, dtype: int64"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_train.groupby(['Survived','Sex'])['Survived'].count()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"_cell_guid": "b1f97218-9ef5-43b3-b946-e067827a6693",
"_uuid": "1e13eaa5a0070378fc59f3a87c3862b1eb0a804a"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAFgCAYAAABuYGW+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGV1JREFUeJzt3Xu0XmddJ/Bv2rRp6QVqCGLLpUXpD6wVLbeKoINWLjMDeBmcaSl4GZGCguKliILWC8oUdRyg2iq4KJdWh5lRERjHOg5iRRQKyALKj+qC2kKRUGpJgRabZP54d2yMOUlO8pzznvfk81nrrHP2fvbl93btPPvb/T577w07d+4MAAAwzhHzLgAAANYbIRsAAAYTsgEAYDAhGwAABhOyAQBgMCEbAAAGE7LhAFXVpVX14hXY7kVV9frR2wVYBPpW1quN8y4ADkVVPTrJxUnOSLI9ybVJfri73zV6X919wehtrqSqOi/JLyW5Z5Krknxvd39mvlUBi0DfundV9WVJLkvysCRfluS07v7YXItizXIlm4VVVScmeXOSVyT5kiSnJPnZJHccxLY2VNW6+fdQVWdkdiJ4epIvTfL5JL8+16KAhaBv3acdSf4oyXfMuxDWPleyWWSnJ0l3XzlNfyHJH+9qrKqLknxFd58/TZ+a5KNJjuruO6vqbUn+Ism/SXJWkouq6qnd/bDdtvH8JI/t7idX1WuS3NjdL6qqa5P8eHe/eVpuY5Kbkjy+u99TVWcn+dUkX5nk+iQ/1N1vm5Y9Lclrpn2+M0kP/a8y87Qkf9jdb5/2+eIk11bVCd29bQX2B6wf+tYldPc/JPn1qS7YJwcJi+wjSbZX1eVJfifJO7v7lmVu4+lJnphZZ3xckhdV1QO7+7qp/bwkv7KX9a5Mcm5mV3uS5PFJPj2dBE5J8pZp23+U5JuT/M+qelB3b01yRZK/TPK4JI+clv2DvRVXVfdL8v591P+c7r5iL/PPSPKOXRPd/XdV9cXMTp7X7GN7APrWpftWOGBCNguruz87jRt8QZLfSnLvqnprkmdOVxsOxGu6+4PT37dW1R9k1sH/XFU9MMmDkrxpL+tdkeS9VXW37v58ZieMXVd9zk/y1u5+6zR9VVW9O8m/rar/l+ThSc7p7juSvL2q/nAfn/Hvk9zjAD/L7o5Pcuse825NcsJBbAs4jOhbYYz1NE6Kw1B3X9vd393d90nyVUlOTvJry9jEDXtMX5HZiSCZde6/P3X0e+73bzO7EehJVXW3JE+e1k2S+yd5alX9466fJI/O7CaZk5Pc0t2f221z1y+j3gN1W5IT95h3YhJDRYD90rfCoXMlm3Wjuz88je171jTrc0nuttsi997Lajv3mL4qyZaq+prMTgjP38cud32teUSSD00nh2R2cnlddz9zzxWq6v5JTqqq43Y7GdxvL3XsWv5+ST60jxqe1d1v2Mv8DyZ5yG7beUCSTZl9DQxwwPStcHCEbBZWVT0oyb9L8rvdfWNV3Tezjvmd0yLvS/KCqTO9NckL97fN7v6nqnpjkpdldlf9VftY/HeSvGRabvexe69P8q6qenySP0lyVJKzk/xtd18/fb35s1X1k0kekeRJ2fvXpru+0jx+f3XvxRuS/GVVPSbJe5L8XJL/5aZHYH/0rftWVcckOXKa3FRVx3T37QezLdY3w0VYZNsyu7nlr6rqc5mdAD6Q5EeTpLuvSvK7md3cck3uupFmf65Ick6SN3b3nUst1N03ZXaTzaOm/eyaf0OSpyT5ySRbM7v68uO569/beVPdn0nyM0lee4B1HbBpLOQFmYXtT2U2Fvs5o/cDrEv61n37QmZD8pLkw9M0/Csbdu7c6zcpAADAQXIlGwAABhOyAQBgMCEbAAAGW88he2OSU+MJKgCj6FcBDtB67ijvk+SjN998W3bscHMncPjYsuWEDSu0af0qcNhabt+6nq9kAwDAXAjZAAAwmJANAACDCdkAADCYkA0AAIMJ2QAAMJiQDQAAgwnZAAAwmJANAACDCdkAADCYkA0AAIMJ2QAAMJiQDQAAg22cdwFr2QknHpNjNh017zKYg9vv+Kds++zt8y4DAFhQQvY+HLPpqJx34RvmXQZzcMXFT8u2CNkAwMExXAQAAAYTsgEAYDAhGwAABhOyAQBgMCEbAAAGE7IBAGAwIRsAAAYTsgEAYDAhGwAABhOyAQBgMCEbAAAGE7IBAGAwIRsAAAYTsgEAYDAhGwAABhOyAQBgMCEbAAAGE7IBAGAwIRsAAAYTsgEAYDAhGwAABhOyAQBgMCEbAAAGE7IBAGAwIRsAAAYTsgEAYDAhGwAABhOyAQBgMCEbAAAGE7IBAGAwIRsAAAYTsgEAYDAhGwAABhOyAQBgsI2rvcOq+pkkFyU5s7s/UFVnJ7ksybFJPpbk/O7+1LTskm0AALBWreqV7Ko6K8nZSa6fpo9I8vokP9Ddpyd5e5KX7q8NAADWslUL2VW1KcklSZ692+yHJrm9u6+epi9N8p0H0AYAAGvWal7J/rkkr+/uj+02736ZrmonSXd/OskRVfUl+2kDAIA1a1XGZFfV1yV5WJKfWI397W7z5uNXe5esE1u2nDDvEmBN0q8C7N9q3fj4jUkenOSjVZUk90nyf5K8PMn9dy1UVfdMsqO7P1NVf79U23J2fPPNt2XHjp0HVbSQdXjbunXbvEuAg7LSfdeh9KsAi2q5feuqDBfp7pd298ndfWp3n5rkxiSPT/KyJMdW1aOnRS9I8sbp72v20QYAAGvWXJ+T3d07kjw9yW9U1XWZXfH+if21AQDAWrbqz8lOkulq9q6/35HkzCWWW7INAADWKm98BACAwYRsAAAYTMgGAIDBhGwAABhMyAYAgMGEbAAAGEzIBgCAwYRsAAAYTMgGAIDBhGwAABhMyAYAgMGEbAAAGEzIBgCAwYRsAAAYTMgGAIDBhGwAABhMyAYAgMGEbAAAGEzIBgCAwYRsAAAYTMgGAIDBhGwAABhMyAYAgMGEbAAAGEzIBgCAwYRsAAAYTMgGAIDBhGwAABhMyAYAgMGEbAAAGEzIBgCAwYRsAAAYTMgGAIDBhGwAABhMyAYAgMGEbAAAGEzIBgCAwYRsAAAYTMgGAIDBhGwAABhMyAYAgMGEbAAAGEzIBgCAwYRsAAAYTMgGAIDBhGwAABhMyAYAgMGEbAAAGEzIBgCAwYRsAAAYbONq7aiqfj/JaUl2JLktyXO7+31VdXqSy5NsTnJzkmd093XTOku2AQDAWrWaV7K/q7sf0t1fm+SXk/z2NP/SJJd09+lJLkly2W7r7KsNAADWpFUL2d19626Td0+yo6ruleSsJFdO869MclZVbdlX22rVDAAAB2PVhoskSVW9KsnjkmxI8oQk903y8e7eniTdvb2qPjHN37CPtq0Hus/Nm48f+yE4bGzZcsK8S4A1Sb8KsH+rGrK7+/uSpKqenuRlSV680vu8+ebbsmPHzoNaV8g6vG3dum3eJcBBWem+61D6VYBFtdy+dS5PF+nu1yV5bJIbk5xSVUcmyfT75CQ3TD9LtQEAwJq1KiG7qo6vqvvuNv2kJJ9J8qkk70ty7tR0bpL3dvfW7l6ybTVqBgCAg7Vaw0WOS/LGqjouyfbMAvaTuntnVV2Q5PKq+ukktyR5xm7r7asNAADWpFUJ2d39D0nOXqLtw0keudw2AABYq7zxEQAABhOyAQBgMCEbAAAGE7IBAGAwIRsAAAYTsgEAYDAhGwAABhOyAQBgMCEbAAAGE7IBAGAwIRsAAAY74JBdVT+2xPwfGVcOAAAsvuVcyf7pJea/aEQhAACwXmzc3wJV9U3Tn0dW1WOTbNit+QFJtq1EYQAAsKj2G7KTvHr6fUyS395t/s4kn0zy3NFFAQDAIttvyO7u05Kkql7b3c9Y+ZIAAGCxHciV7CTJ7gG7qo7Yo23HyKIAAGCRHXDIrqqzklyS5KszGzqSzMZn70xy5PjSAABgMR1wyE5yeZI/TPK9ST6/MuUAAMDiW07Ivn+Sn+runStVDAAArAfLeU727yV53EoVAgAA68VyrmQfk+T3qurqzB7d9888dQQAAO6ynJD9oekHAADYh+U8wu9nV7IQAABYL5bzCL9vWqqtu/90TDkAALD4ljNc5NV7TG9JcnSSG5M8YFhFAACw4JYzXOS03aer6sgkL0qybXRRAACwyJbzCL9/obu3J3lJkgvHlQMAAIvvoEP25FuS7BhRCAAArBfLufHxhiS7v+3xbpk9O/s5o4sCAIBFtpwbH8/fY/pzST7S3Z8dWA8AACy85dz4+GdJUlVHJPnSJP/Q3YaKAADAHg54THZVnVBVr03yhSQfT/KFqrq8qu6+YtUBAMACWs5wkVckOS7JmUmuT3L/zJ4u8vIk3zW+NACAcU66+9HZePSmeZfBnNz5xTtyy61fXLX9LSdkPyHJA7r789P0R6rqe5L83fiyAADG2nj0plxz8ffNuwzm5KEXvirJ6oXs5TzC7/bM3vK4u3smuWNcOQAAsPiWcyX7VUmuqqpfzV3DRZ6f5LdWojAAAFhUywnZL8nshsenJTk5ySeSXNzdr16JwgAAYFEtZ7jIf0vS3X1Od39ld5+T5Nqq+rUVqg0AABbSckL2uUnevce8a5KcN64cAABYfMsJ2TuTHLnHvCOXuQ0AAFj3lhOQ/zzJz09vfNz15seLpvkAAMBkOTc+/lCSNye5qaquT3K/JDcledJKFAYAAIvqgEN2d99YVWcleUSS+ya5Iclfd/eOlSoOAAAW0XKuZGcK1O+cfgAAgL1w0yIAAAwmZAMAwGBCNgAADCZkAwDAYMu68fFgVdXmJK9L8uVJvpjkuiTP6u6tVXV2ksuSHJvkY0nO7+5PTest2QYAAGvVal3J3pnk4u6u7j4zyd8leen0QpvXJ/mB7j49yduTvDT555fd7LUNAADWslUJ2d39me5+226z3pnk/kkemuT27r56mn9pku+c/t5XGwAArFmrMlxkd9MV6mcneVNmb428fldbd3+6qo6oqi/ZV1t3f+ZA97d58/HjiuewsmXLCfMuAdYk/SqwqFbz3L7qITvJK5LcluSVSb5tpXd28823ZceOnQe1rpB1eNu6ddu8S4CDstJ916H0qzBPzuscyrl9ucfPqj5dpKp+OckDk/zH6e2Rf5/ZsJFd7fdMsmO6Ur2vNgAAWLNWLWRX1S9mNs76W7v7jmn2NUmOrapHT9MXJHnjAbQBAMCatVqP8DsjyQuTfCTJO6oqST7a3d9WVU9PcllVHZPpMX1J0t07lmoDAIC1bFVCdnd/MMmGJdrekeTM5bYBAMBa5Y2PAAAwmJANAACDCdkAADCYkA0AAIMJ2QAAMJiQDQAAgwnZAAAwmJANAACDCdkAADCYkA0AAIMJ2QAAMJiQDQAAgwnZAAAwmJANAACDCdkAADCYkA0AAIMJ2QAAMJiQDQAAgwnZAAAwmJANAACDCdkAADCYkA0AAIMJ2QAAMJiQDQAAgwnZAAAwmJANAACDCdkAADCYkA0AAIMJ2QAAMJiQDQAAgwnZAAAwmJANAACDCdkAADCYkA0AAIMJ2QAAMJiQDQAAgwnZAAAwmJANAACDCdkAADCYkA0AAIMJ2QAAMJiQDQAAgwnZAAAwmJANAACDCdkAADCYkA0AAIMJ2QAAMNjGeRcAwOHjhBOPyTGbjpp3GczJ7Xf8U7Z99vZ5lwGrQsgGYNUcs+monHfhG+ZdBnNyxcVPy7YI2RweViVkV9UvJ/mOJKcmObO7PzDNPz3J5Uk2J7k5yTO6+7r9tQEAwFq2WmOyfz/JNyS5fo/5lya5pLtPT3JJkssOsA0AANasVQnZ3X11d9+w+7yquleSs5JcOc26MslZVbVlX22rUS8AAByKeY7Jvm+Sj3f39iTp7u1V9Ylp/oZ9tG1dzk42bz5+bNUcNrZsOWHeJcCapF/lUOhbmafVPP7W/Y2PN998W3bs2HlQ6+oIDm9bt26bdwlwUFa679Kvcijm2bc6/jiU42+5x888n5N9Q5JTqurIJJl+nzzN31cbAACsaXML2d39qSTvS3LuNOvcJO/t7q37alv9SgEAYHlWJWRX1cur6sYk90nyJ1X1wanpgiTPraqPJHnuNJ0DaAMAgDVrVcZkd/fzkjxvL/M/nOSRS6yzZBsAAKxl8xyTDQAA65KQDQAAgwnZAAAwmJANAACDCdkAADDYun/jIyyik+5+dDYevWneZTAnd37xjtxy6xfnXQYAh0DIhjVo49Gbcs3F3zfvMpiTh174qiRCNsAiM1wEAAAGE7IBAGAwIRsAAAYTsgEAYDAhGwAABhOyAQBgMCEbAAAGE7IBAGAwIRsAAAYTsgEAYDAhGwAABhOyAQBgMCEbAAAGE7IBAGAwIRsAAAYTsgEAYDAhGwAABhOyAQBgMCEbAAAGE7IBAGAwIRsAAAYTsgEAYDAhGwAABhOyAQBgMCEbAAAGE7IBAGAwIRsAAAYTsgEAYDAhGwAABhOyAQBgMCEbAAAGE7IBAGAwIRsAAAYTsgEAYDAhGwAABhOyAQBgMCEbAAAGE7IBAGAwIRsAAAYTsgEAYDAhGwAABhOyAQBgsI3zLmB/qur0JJcn2Zzk5iTP6O7r5lsVAAAsbRGuZF+a5JLuPj3JJUkum3M9AACwT2v6SnZV3SvJWUm+ZZp1ZZJXVtWW7t66n9WPTJIjjthwSDXc86TjDml9FtehHjuH6ugTN891/8zXIR5/pya5McmdQ4q5i36VQ6ZvZZ5Ws2/dsHPnzkPZ2YqqqocmeW13n7HbvA8lOb+737Of1R+d5M9Xsj6ANey0JB8bvE39KnC4O+C+dU1fyT5E70rymCQ3Jdk+51oAVtuNK7BN/SpwuDvgvnWth+wbkpxSVUd29/aqOjLJydP8/bkjydUrWh3A4UW/CnCA1vSNj939qSTvS3LuNOvcJO89gPHYAAAwN2t6THaSVNWDMnuE30lJbsnsEX4936oAAGBpaz5kAwDAolnTw0UAAGARCdkAADCYkA0AAIMJ2QAAMJiQDQAAg631l9GwhlTVRUmO7+4fm3ctrE1V9a1JfinJ7Un+00o+brOqXpPk3d39ypXaB6w0/SoHQt+6mIRsYKRnJfnp7n7jvAsBWEf0rQtIyD5MVNXOJC9K8q1JNid5ZpJzkjwhyVFJntrd11bVvZNcmeTEJMckeUt3X7jENl+Q5DsyO44+nuSZ3f3Jlf4srE1V9V+TPGb2Zz0nyU8keWlmx1IyO0G8papOTfLuJL+V2fF3bJKnJbkgySOTfCHJU7r7k1V1ZpJfT3JcZsfjb3b3r+1l30cneUmSb0yyKcn7kzy7u29boY8L+lVWhb51cRmTfXj5x+5+eJIXJPmDJH/R3V+b5LVJfmrXMkme1N0PTfI1SR5WVU/Yc0NVdX6SL09ydnefleStSX5lFT4Da1R3Pz+zDv55Sb4tyaVJzpuOpX+f5LKquse0+OYkV0/H36uT/N8kl3T3Vye5JskPTst9LMk50zH2iCTfX1UP3svuL0xya3c/orsfkuQTSV64Ah8T9qRfZUXpWxeXK9mHl9+dfr8nyc7ufvM0fU2Sb5/+PjLJy6rqUUk2JLl3ZieFP9pjW09O8rAk76mqZHYs3bpypbNgHpXktCT/ezo+kmRnkq9I8ukkt3X3W6b570lyY3e/b5q+Jsm3TH/fLclvVNVDkuxIcnKShyS5do/9PTnJiVX1H6bpTUn+Zugngr3Tr7Ka9K0LRMg+vNw+/d6e5I7d5m/PXcfCjyQ5Kckju/v2qvrNzL5K2tOGJL/Q3b+9UsWy0DYkeX93f8OeDdNXmnsef7fvMb3rePzFJJ9M8t3dfWdV/XGWPh6f091/OqB2WA79KqtJ37pADBdhT/dIctN0IjglyVOWWO5NSZ5TVSclSVVtmv6PGJLkHUkeWFWP3TWjqh5eVRuWuZ17JLlhOgl8VWbjEvfmTUl+pKqOnfZ1whJffcI86FcZRd+6QIRs9vTyJF9fVR/IXeO5/pXufl2SNyT5s6p6f2ZfQ339qlXJmtbdt2T2NePPVNXfVNW1SS7K7KrIcvxCkmdOx9hFSd6+xHIvzewrzHdNy16dxImAtUK/yhD61sWyYefOnfOuAQAA1hVXsgEAYDAhGwAABhOyAQBgMCEbAAAGE7IBAGAwIRsAAAbzxkdYpqp6dJKLk5yR2Ru0rk3yw939rrkWBrDA9K2sN0I2LENVnZjkzUmeneS/Jzk6szdl3bGv9QBYmr6V9UjIhuU5PUm6+8pp+gtJ/nhXY1V9b5IfT3LvJH+d5Pu7+/qqelRmr6f92u6+YXpV8tuSfF13f3gV6wdYi/StrDvGZMPyfCTJ9qq6vKqeWFUn7Wqoqqck+ckk355kS5I/T3JlknT3O5JcluTyqjo2yeuTvNhJACCJvpV1yGvVYZmq6sFJXpDknMyuqrw1yTOTvCbJ/+juV0/LHZHktiQPnq64HJXknZl9DfrxJE/sbv8AAaJvZf0RsuEQVNWDMrtycl2ShyS5X5I7d1tkU5Jvnq62pKqem+TlSR7X3VetcrkAC0HfynogZMMhqqofTPKsJJ9I8trufsMSy52S5G8yGz/4sCQP72439QDshb6VRWdMNixDVT2oqn60qu4zTd83ybmZfVV5aZIXVtUZU9vdq+qp098bMvvK89VJ/nOSm5L8/Op/AoC1R9/KeiRkw/JsS/LIJH9VVZ/L7ATwgSQ/2t2/l+S/JPmdqvrsNP+J03rPS3KvzG7I2Znke5J8T1U9ZrU/AMAapG9l3TFcBAAABnMlGwAABhOyAQBgMCEbAAAGE7IBAGAwIRsAAAYTsgEAYDAhGwAABhOyAQBgsP8PKPlaOg0kzugAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.catplot(x='Sex', col='Survived', kind='count', data=df_train);"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"_cell_guid": "4a6f8e4e-c58f-4f6f-9287-9f9a741431da",
"_uuid": "11444fc10bb62ac315a6ab2114b9ff54dde3d45e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"% of women survived: 0.7420382165605095\n",
"% of men survived: 0.18890814558058924\n"
]
}
],
"source": [
"print(\"% of women survived: \" , df_train[df_train.Sex == 'female'].Survived.sum()/df_train[df_train.Sex == 'female'].Survived.count())\n",
"print(\"% of men survived: \" , df_train[df_train.Sex == 'male'].Survived.sum()/df_train[df_train.Sex == 'male'].Survived.count())"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"_cell_guid": "fbbf541c-ae16-4f7e-a462-fdd6f9898440",
"_uuid": "3994bc6102c107006edc0854ea7663eea2c030d2"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA4gAAAGgCAYAAADo0Em8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd81PX9B/DX9+57MxdCQkIOMhgHfNlLOHABguIe1aq1ddWtVfuzrVatttq6W7XaWvceqNRtXYgKVNlD9hdCICSE7H37O35/3GFRERlJPjdez8cjj+QuN1534r3z/n4/QzJNE0REREREREQW0QGIiIiIiIgoObBBJCIiIiIiIgBsEImIiIiIiCiBDSIREREREREBYINIRERERERECWwQiYiIiIiICAAbRKJvKIrymKIot3bB496mKMpLe/m9Q1GU9Yqi9OmC575QUZT/7uNt71cU5crOzkBERPRjkqUGK4riUhTlPUVRWhVFmd3ZefZGUZQvFEW5ZB9u51AUZaOiKAXdkYsyjyw6ANHeKIpyBID7AIwAoAPYAOD/VFVd2tnPparqFZ39mPvoMgDzVVXdKej5d/kbgCWKojytqmpUcBYiIhIsQ2vwTwEUAuilqqomKNNeqaoaURTlGQA3Avit6DyUfngGkZKWoig9ALwP4B8A8gAUAbgdQOQAHktSFCVZ/71fAeBF0SESxXEjgFNEZyEiIrEyuAb3A7ApWZvD3bwC4AJFURyig1D64RlESmZDAEBV1VmJyyEAn+z6paIotwEYpKrquYnL/QFsBWBTVVVTFOULAF8CmAZgPIDbFEU5U1XVCbs9xnUAjlJV9RRFUZ4DUKWq6i2KomwAcL2qqu8nbicD2AngWFVVVyiKMhnAAwCGA6gA8GtVVb9I3HYAgOcSz7kIgPpDL1BRlFIAAwEs3u265wAEAQwAcCSArwGcgfiRwgsA1AI4R1XVlYnb3wjgUgC9AVQC+IOqqm/9wPMNRbzYHwKgHsCtqqq+vttNvgBwIoB//1BmIiLKCBlXgxVFuR3ATQAkRVFOSzzu04qiXATgegBeAEsAXKaqakXiPiaAXwG4LvH7vyee/0UAIwF8BOBcVVWjiqLkJq6fhPjf4F8CuEJV1aofyPeDz6uqapWiKM0AJgOY90OvkehAJOvRHCIA2ARAVxTleUVRjk98sO6v8xAfPpIN4DEAiqIog3f7/c8RPwr3XbMAnLPb5WMBNCQKUxGA/wC4A/Gjqr8D8MZucwFeAbAcQD6AvyDe1P2QUQDK93Ck8iwAtyQeIwJgIYAVicv/Rrww7rIF8UYyB/Gjuy/taT6joihZAOYk8vUG8DMA/1IUZfhuN9sAYMxe8hIRUWbIuBqsquqfANwF4DVVVT2J5vBUADcDOB1AAYAFiXy7OxbxA6+TAdwA4AkA5wIoQbxJ3PVaLACeRfwsZSniTfc/9xRsH5+XNZu6BBtESlqqqrYBOAKACeBJAPWKoryrKErhfjzMc6qqrlNVVVNVtRXAO0h8UCeK1FAA7+7hfq8AOEVRFHfi8s/xvw/mcwF8oKrqB6qqGqqqzgGwDMAJiaORExE/MxdRVXU+gPf2kq8ngPY9XP+WqqrLVVUNA3gLQFhV1RdUVdUBvAZg3K4bqqo6W1XV6kSW1wBsBuDfw2OeBGCbqqrPJt6PlQDeAHDmbrdpT2QiIqIMluE1eHdXALhbVdUNiUbyLgBjFUXpt9tt7lNVtU1V1XUA1gL4RFXV8sRr/hCJmq2qaqOqqm+oqhpUVbUdwJ0Aph7E87JmU5fgEFNKaqqqbgBwIfDN8MiXEB++cc5e7ra7yu9cfgXA/QD+jHjBeVtV1eAenrcsMcTlZEVR3kN8Xt6upqwfgDMVRTl5t7vYAHwOoC+AZlVVA7v9rgLxo4h70oz4kdXvqt3t59AeLnt2XVAU5XwAvwHQP3GVB/Ejp9/VD8AkRVFadrtOxrfnXmQDaAEREWW8DK7Bu+sH4CFFUe7f7ToJ8TmZFYnLP1azvQCQaHgfBHAcgF1nZLMVRbEmDgDv7/OyZlOXYINIKUNV1Y2JOQqXJ64KAHDvdhPvHu5mfufyHAAFiqKMRbzAXbeXp9w1xMUCYL2qqmWJ6ysBvKiq6qXfvUPiyF6uoihZuxWo0j3k2GU1gAGKosgHMiE+8XxPApgBYKGqqrqiKKsQLyLfVQlgnqqqx+zlIYchPueRiIjoGxlcgysB3Kmq6st7ybqvfgtAATBJVdWaxPuwEj9cs3/seYch3nATdSoOMaWkpSjKUEVRfqsoSnHicgnixWJR4iarAExRFKVUUZQcxCeW75WqqjEAswH8FfG5C3P2cvNXAcwEcCW+PUfiJcSPah6rKIpVURSnoijTFEUpTkweXwbgdkVR7Iklwk/+/kN/k6cKQBn2PCR0X2QhXvjqAUBRlF8iPt9hT94HMERRlPMURbElviYqijJst9tMRXw4DBERZTDW4G88BuAmRVFGAICiKDmKopy5l9vvTTbiZxRbFEXJA/CnA33exFzMPPzvvwdRp2GDSMmsHfGVvhYrihJA/ENwLRJ7/iTmHbyG+BHA5Yg3QPviFQBHA5i9t7N2iW0fFgI4LPE8u66vBLBr8ng94kf5rsf//n/6eSJ3E+If/i/8SJ7HEZ/Iv99UVV2P+NHDhYgPaRmF+Kpoe7ptO+LF9mcAqgHUALgXgAMAEgvbDAfw9oFkISKitMIaHH++txCvla8qitKG+Htw/I885g/5OwAXgAbE38+PDuJ5fw7geVVV93vbEaIfI5nmD511J6LuoMT3MFoJYMZuG/WKyHE/gC2qqv5LVAYiIqLulCw1eH8kMn8NYIqqqnWi81D6YYNIREREREREADjElIiIiIiIiBLYIBIREREREREANohERERERESUwAaRiIiIiIiIALBBJCIiIiIiogQ2iERERERERASADSIRERERERElsEEkIiIiIiIiAGwQiYiIiIiIKIENIhEREREREQFgg0hEREREREQJbBCJiIiIiIgIABtEIiIiIiIiSmCDSERERERERADYIBIREREREVECG0QiIiIiIiICwAaRiIiIiIiIEtggEhEREREREQA2iERERERERJTABpGIiIiIiIgAsEEkIiIiIiKiBDaIREREREREBIANIhERERERESWwQSQiIiIiIiIAbBCJiIiIiIgogQ0iERERERERAWCDSERERERERAlsEImIiIiIiAgAG0QiIiIiIiJKYINIREREREREANggEhERERERUQIbRCIiIiIiIgLABpGIiIiIiIgS2CASERERERERADaIRERERERElMAGkYiIiIiIiACwQSQiIiIiIqIENohEREREREQEgA0iERERERERJbBBJCIiIiIiIgCALDoAUQqzAHDt9mVPXGdNfN/1pQNoA9AKoAOAISIsERFRhpAA2AA49/BlARAEENjtewyAKSQpURJig0j0bdkA+u7+FY5q/aMxYyCAYtkqFcqyxWO1SHaLJFl13dQ03dBiumHoumkYpmmapon4D4BhmrBaJDgdsuywWW2ybJF13YhouhnUdaPDMNEGmK2A1Gy1So122Vpvky11AMoBbEl8tQt7N4iIiMSSAOQgXpOLdn0Fw7GBmm4MkCSp2GqRelokyW6xSDaLRbJZLZJsmDB13dA03dA13TRimm7ENMMEALvNKtlli9UmW2VZtsgSAN0worpuRgzTDBuGGTJMhAC0WC1Sudspb5IkqRLAdgCVia+QkHeDqBtIpskDJpRxegIYDWBMIBSbpBvGMKvF0sdus+ZJgLUtGA01tYWNhuaQpbY56GxoCdma2sJoag2jsTWM9mAUkZiOmLb/JwItEuBy2pDllOF22uB2yshy2uB2/e+63B6OWEnv7FDfgizk9XC5DMMIR2LGdkmC6nbaVlstUhnijWMZgEbwqCcREaU2CfHGbziAEYFQbIJumMOsVqmPw2bNMwxTagtEw41tYaO+OWitbQq6GlpC1sZddTmwqy7riMYMxDQdxn5URqtFgsNuhdMuw2GzwmGPf2W77cjPcaJ3nlvv0ysrVNjLref3dFl7uO0uzTBD0Zhea5qotMmWzS6HvAHA1wBWAWjqijeJqLuwQaR0ZgHgAzBG041xwbB2uE22jJCtUk51fSC4qbLZUVbZ4txRH0BjawhNbWEEw5rozN+T18MJby83+uR70Dc/yygtzA4U9fYYBbkup9UimeGoXiFbLfNdDnkegIUAtoJNIxERJScHgJEAxoUi2qGabkxy2K0DYzEDO+o7omVVLc6t1W2OnQ3x2tzYGkYokly1WZKAnCwHCnJdyO8Z/yopzI4opbnh4t4et26YbTHNWJPllBdYrZYViDeNFWBtphTBBpHSSRGAo4Ph2FG6YfqddnlgMBzTtla36mpFs6e8utWytboNNY0BpMs/e4/LhlJvNoaU5pqjBxV0DO2fa7XLVj0S01d4XLZPLBZpIYCliM99JCIi6m69ARwVDMeONwxzitMhFze0hEKbtrdY1YqmrPLqVlTsbEN7MCY6Z6eQJMCbl4UBRT3gK+qpD+2fGxjQN0d22KxSOKpvtNssC512eQGAzwDUic5LtCdsECmV9QAwNRTRTjQM80SrRSpYvaUhtkqt95RXt2JbdSsCSXhGsKvl93RCKc3D8IF50dG+/FBR72x3JKpVWSzSPLfT9gWA+YifZSQiIupsuYjX5uMMwzxetlq8G7Y1hZdtqM1ev7VR2raz7YCmaKS6HI8dA/rmYGBRjjl2cEHH8AG9HDFdr5atlvecdvlDAAvAg7mUJNggUiqxAZgU04xjw1HtNKfdOmRLVWt48boaz8pNdZatO1r3a85BppCtFgwsyoHSLxejB+V3jPLlWwE0ylbLWw679W0A/wUQFRyTiIhSUzaAIyNR/diYpp9gt1lLN1e2hJeur8leXdYgbdnRCoPF+XssFgmDi3ti7JACY9JIb0f/PjmucFRb73LIb8tWyyeIj/5Jj9OqlHLYIFKyKzVN87T2YOwMl8Pqr20KRZesq3Gt3FRnW1/eiGgGHoU8WJIE+Ip6YuLwQv2IMX0D3l5Z9mhMn+9x218B8B44uZ6IiPauF4DT2oPRi5126yFbq9vCS9fXeL7e3GDZXNkMTefflvvLYbdixIBeGK/0jk0cURgq6Omyh6P6omy3/SUAbwJoFp2RMgcbREpGRYZhnhUMxy6xWi0DF63ZaS5ZX+NaXdaAtgBPdHW2HI8d45VCTBlX1D56UL49EtO/znbbnwPwNoCdguMREVFyyEO8KbzIYbNOWLWpPvbZskrPso21iER10dnSTo7HjjGDC3DUISUdowfl2yIx/atst/0pAO+CQ1Gpi7FBpGTRyzTNsztCsctssmXo4rU1+ufLK92rNtVD59CUbuOwWzFe6Y0p44oCE4cVyjHN2Ox22R6xSNIrANpE5yMiom6VC+DU9mD0YofNOvHrzYmmcEMtwmwKu43LIWPySC+O8fdrV/rl2qMx/VOP2/40gA8BhEXno/TDBpFEsgM4oSMYvcpus05ZvrFWm7Nke9ZKtR6azqGjoslWCWMGF+DEwwcExgwusGq68bbbaXsYwCJwqW4ionTlAHBGezB6ucNmnbSmrCE2d1mlZ+n6GjaFSaBHlh2HjuqDY/z92gf07SHHdOP9LKftWQCfgnMWqZOwQSQRRoci2tUWi3ROZU27+cFXW7O/XF2dlHsQUlxPjwMzJpYYJx85MOS0y/Uuh/x3i0V6EZyvSESULkojMf1qmLhiy44W6YMvt3qWrK9Nuj0I6X/yejhx+Oi+5sxJpe198rMASXrMYbM+AmC76GyU2tggUnexADiuIxT9o2li9Pv/LbfNXVop1zYFReei/TTKl4+TjhgQnDCs0BLTjA+zXLaHEN86gx8mRESpRQIwoyMUu0G2SEfOXVYpvbeg3LGjnlPcUk1xbw9OPHxA5OiJpaZmGF95XPb7AMwBwCFZtN/YIFJXcxmmeW44ot3a3BbJfXWO6vnv1zu4wlkayHbbMH1CiXHykb5gttvWZrdZH5atlqcBNIjORkREe5VjGOaF4ah2fWtHNOeNzzdnzVtRJXEIaepz2K2YOq4Ipx81uCM329HutMv3WCzSM+DCNrQf2CBSVymMxvRrTdO8ZsO2Zun1Tzd51mxh35CuhvbPxUmHDwxNHtnHNGE+6bTLdwOoFZ2LiIi+ZWQwHPutbLWcvUKtM976oixr/VbOFEhXw/rn4aczBgfGDC6AaZpPOO3ygwAqReei5McGkTrbiGA4dpPVajlj3ooqvPVFmbOqjgetMkV+TyfOnDEkMmNCqWGY5nMuh3wHgGrRuYiIMtyoQCh2H4Cp78zfYvt4UYXc1MbFLzNFYZ4bp031RY/2lxq6bn6c5bLdBGCD6FyUvNggUmeZ2hGK3Qlg/NtflNk+XLhN5p6FmSs324EzZwyJzJzUzzRM8yWXQ/4zeNSSiKi7DQ+EYvcCmPHqHNXx4VfbLJEYh5FmKrdTxgmHDdDPnDE4agLvZzltNwIoF52Lkg8bRDpYIwOh2D+jMX3iCx9ucM9bUYWYxvnQFJfjseOMowZHTzisv6Eb5utup+02AFtF5yIiSnNDA6HYPZKEY1//dJPtP19utXJ+Ie3idsr4ydRB2mnTfJphmK+5nbZbAFSJzkXJgw0iHajiYDh2L4CfvPTRRseHX22zcO9C+iE9suw4baovdvKRA3XDMN92O223AigTnYuIKM0MDoZjd0mSdNK/526S3/vvVpnbVNAPyXbbcOaMIdHjD+uvmyaeSYz2qROdi8Rjg0j7Kycc1W6RgF+9999yefbczTbuX0j7Kstlw2lTfNqpU30aTLzucsq/BVc9JSI6WAMSjeFpb36+WX53QbnM2kz7KjfbgZ/NVCIzJpTqgPmII77QXLPoXCQOG0TaV3ZNN67SdePPX62ulp//YIOrsZUT3OnAZDllnHfC8MjRE0tistXye6vV8jgAjn8iIto/7khUv9WE+eu3viizvTNvixxgY0gHqCDXhXOPGxo+fHSRLkm4126z/hUA/9jLQGwQ6cdIAM4KRbSHNlU0eZ58Z21WRU276EyUJvr36YFrzhobKO7tqXY7bRcC+Ep0JiKiFCABOCUU0Z5YqdZlP/H2Gh60pU7TNz8Ll542KjhiYK8Wl0O+EMAc0Zmoe7FBpL2ZGAjHnm9sCZU+9uaaLO5jSF1lyrgiXP6T0UHZKv3H7bRdC6BGdCYioiTlC4RiT3eEohMffn2Ve/Vm1mbqGhOHFeKas8cGHTbrHLfTdiWAnaIzUfdgg0h74gpHtLt1w7zssTdXO+etrJL4z4S6mssh45yZSvSEwwZoFov0R5tseRhATHQuIqIk4YpE9VtM07zu1Tmq/Z35W6yazuJMXcths+KcmUr0pCMGxKxWy82y1fIIOCUk7bFBpO86MhTRZq1Ua3v9643VztYO7mVI3au4twdXnzk2MKBvjwa303YxgLmiMxERCXZyKKI9uWpTXY8n3l7jamjhcFLqXiWF2fj12eMCJYWeSrfTdh6AZaIzUddhg0i7ZIci2gMxTT/3H6+vci5ayxF+JNbkkX3wq5+OCdpslk+z4o0ix1ERUaYpCYRizwVCsckPv77K/fXmetF5KMNNn1BiXnraqLDVIr3scsi/A9AqOhN1PjaIBAAzQxHtpa9W78h58p119kCIo/ooOThsVpx3wrDosZP7BZ12+TwA74vORETUHQzDPDuq6U/9e+4m1xufl3E4KSUNj8uGi04ZET5ybFHYaZcvBPCO6EzUudggZrbcYDj2SCSqn/bgqytcK1UemaTkNGJgL/z+/AlBh836pttpuwoAl9IlonSVEwzHnuoIRk+8+/llrrKqFtF5iPZoWP883HjBxKDLLr/qcsrXAAiKzkSdgw1i5jo1FNGe/Xz5ds9z72+whSLcN4mSm8sh4/KfjAofPrpvm9MhnwlgvuhMRJQ+FEX5G4AzAPQHMEpV1bUCYhwRDMfenL+isudT7623RaJcC4SSm9sp49qzxobGDy2sdTnkUwGsFp2JDh4bxMyTFQzHngqEYqfe/8oK17ryRtF5iPbLxGGF+M0vDgnJVukhp12+FQCPbhDRQVMU5QgAFQAWADipmxtEWziq3RmL6dc8OGulc+mG2m58aqKDN31CiXnF6aPDslW6ySZbHwbABiOFsUHMLMOD4dgHS9fv7PPP2avtYR6ZpBTVM9uB358/ITiwb85mt9N2KuJ/1BERHTRFUbahextEJRCKvq1WNA14cNYqR0tHpJuelqhz9emVhZt/6Q/0znUtdTttZwOoE52JDgwbxAyhG8b50aj+2BPvrHF+uqRSEp2H6GBJEnD6tEHaz2YqYaddvgjAbNGZiCj1dWODKGm6cXkspj/w3H/WOT/4qoK1mVKe1SLhvBOGRU88fEDQaZfPBvCJ6Ey0/9ggpj9XRzDyVEcwdsadzy11bNvZJjoPUacaXNITf/ilP+hyyLPdTttlALh5JxEdsG5qEF2BUPSVxpbQcXe/sMxZVdfRhU9F1P1GD8rH78+fELTJ1qddDvl6ADw1nkLYIKa3fu2ByKerNtX1+8fs1VyIhtKWyyHjxvMnBIf2z1vvdtqOB/dMJKID1A0NYnF7IDJ3hVo74OHXvrZFNaOLnoZIrGy3Db87d0JwaL/cjW6n7TgAXC4/RVhEB6AuMz0Yjq577dNNvvteWsHmkNJaKKLh9qcWuT9eVDE6HNHWABguOhMR0Xdpmj45EIqs//fnmwf97eWVbA4prbUHY7jtyYXuD77aNjJRm0eKzkT7hmcQ048UCkdviOnGn+99Ybl9dRlPpFBmmT6hxLzyjNEBp10+C8CHovMQUWpQFOVhAKcD8CI+CqFRVdURnfX4oXDkIt3Aow+8stLOVUop0xx1SLF51U/HBBO1+QPReWjv2CCmF2dLe3B2U2tk5h3PLbXXN4dE5yESYmj/XPzp4skhu836R7vNej+43DYRiWNtbu14JKrhotufXmKrrG0XnYdIiKH9c/GnSw4N2WULa3OSY4OYPnKaWwPz121tGv7grFUyh61QpivIdeGOyw8L5PZwvulyyJeAi9cQUffr2dQa+KiytmP8PS8st3WEYqLzEAm1W21+w+WQLwVrc1Jig5gGQqGwNxTRln61pqbvk++ssxj8T0oE4FuL16xzO20ngIvXEFH3GdLWEZr/xYqq/Kff22A1WJyJAMRr800XTAwq/XLXJmpzo+hM9G1sEFNcfUPjENnmXPyfryp6vPbpZi46RPQdFgm48KQR0eMP7d/kdMgzAKwXnYmI0lskGj1M081Pn353nXMO9x4m+h6LBPzy5BHR4yb3b3Q65OkANorORP/DBjGF7ayt92dleb544cONzo8XbWcBItqL3RavORbAV6LzEFF6ampuOclud77x15dX2leodaLjECW1oyeWGlecPirgsMvTASwTnYfi2CCmqModO4/v2TP37Ydf/9q+aG2N6DhEKWGcUoCbL/AHnA75BADzRechovSyvar6op49cx+749lltg3bmkTHIUoJ/hFeXH/uIR1OuzwTwELReYj7IKakqh015+fk5L579/PL2RwS7YeVaj3+8uzirHBE+wDAdNF5iCh9lJVvv8mT3fPxPzy2iM0h0X5Ysq4Gdz+31BOOanMATBWdh3gGMeVUVO68sUdOzl9ue2qJXL6jVXQcopQ0cmAv/PGSyUGXQ/4JgE9E5yGi1KaWbbszN7fXDbc8vlje2RgQHYcoJY0elI9bLpoUdDnk0wDMEZ0nk7FBTCEVlTsfcrg8V936xCK5pjEoOg5RShvWPw+3X3Zo0OWQzwQ37SWiA7Rh09YHc/N6XX3zo4vk+hbuP0x0MIYPyMNtlx4adDnkswD8R3SeTMUGMUWoZdv+7vb0/NXNjy2SW9ojouMQpQWlNBd/ufywkMspnwPgHdF5iCi1rNtQ9kTPXgW/vPnRRXJTW1h0HKK0MKQ0F3+5/NCQ22n7BYC3ROfJRJyDmAKWLF99b07PXlff8vhiNodEnUjd3oybH/3SFQzHZhmGeYboPESUOtas3/xCds/8X974r4VsDok60abtzbj5X1+6AqHYy4Zhni06TyZig5jEvD6/9J+PP7/D5/P99pbHF1lZgIg6X1lVC27615euUER70TDMn4nOQ0TJb/Gy1Y/1zCs45+bHFvLALVEX2LKjFTf8c4ErEI49oxvGBaLzZBrrbbfdJjoD/YDSkr43HTX1iD/e+vhia3UDJ70TdZXm9giWrq+xTT2k5ESrVaqwSNJq0ZmIKDl99On8u0cMH37NTY8ulJvZHBJ1mdaOKBavq7EdNaH0WLvNuhrAJtGZMgXPICapl197+8pjj5n+lz8/s9S6vbZddByitFdR047f/2OBKxLVnwBwtOg8RJR8Xpz11h8m+ydc/8cnF1sbWzmqh6irVdV14I+Pf+UKR7RXAUwWnSdTsEFMQs+//MY5J50w8+F7Xlxu3VzZIjoOUcbYXtuOPz+92BWOam8BGCU6DxElj38+/sIVp5583O13PLvMWlXXIToOUcbYXNmCe15Y6g5HtY8BKKLzZAI2iEnmqedeO/HUk497/qHXV8trtzSKjkOUcdaVN+Ifr6/KCke1zwAUic5DROL97eEnf3LuOWc8/MCsVVZ1e7PoOEQZZ/nGOjzx1hpPOKLNA9BHdJ50xwYxiTzyxItTTj/txDeefHeDvHR9reg4RBlr/sod0uxPN/cMhbXPAWSLzkNE4vzl3n9MufDcs1955v2N8vKNdaLjEGWsOUu2W978oiwvFNG+ANBDdJ50xgYxSdxz/6Njzjzj5A9f/bTMPn/lDkl0HqJM9/rcTfKXq6tLguHY+wBsovMQUff73R/uGnnRBee8/+5/K+yfL69ibSYSbNYnqm3Bqh2lwXDsQwB20XnSFRvEJHDCGRcVnfGTk+bMXbbT+eHCChYgoiTxj9mrnGVVLRNCEe0pAPx/kyiDXHL1jaVXXnrB50s2NLnfmlfOv5eIksQjs1c5N2xrGhsKa6+AvUyX4JsqmNfnz/3ttZd/0By05M6as4n/PYiSiGGYuOOZJe7G1tAZkZh+i+g8RNQ9hoydnnPFJefPrWzQcp/9zwar6DxE9D+vT7F/AAAgAElEQVSGCdz93FJ3dUPHceGodr/oPOmIDckPUBRliKIoCxVF2ZT4Prizn8Pr83tuvfGa54cNGzr8/lmrZNPs7GcgooMVimj4w6NfZYUi2o2GYf5cdB4i6lpen9912x+ue71nr8L+D89ebWVtJko+kZiOWx//Kqs9EL1MN4wLRedJN2wQf9hjAB5RVXUIgEcAPN6ZD+71+a1nnX7in8/92U+P/8uzy+RgWOvMhyeiTtTUFsYfHv3SHYnpTwGYKjoPEXUNr89vu+i8M/96wrEzZtz9/HI5phmiIxHRD2gPxnDbk4vcsZjxCIDRovOkEzaIe6AoSm8A4wHMSlw1C8B4RVEKOus5Jowfdd6fbr7uqn/+e43M/ZSIkt/2mnbc9dwSVziqvQNuf0GUdrw+vzRp4tirrr/uyksfmLXKWtccEh2JiH7E9tp2/PPfX7tCEe1DADmi86QLNoh7VgJgh6qqOgAkvlcnrj9ooyYdN+m+O27525xlO2yL1u7sjIckom6walM93viszB0Mx94FVzYlSisF+XnT/nrnrX96/8sKeeWmetFxiGgfzVtRJc1fWZUXDMdmgQvKdQo2iN3M6/MX3fOXm54N6o4esz7mojREqea1T1VbWVXL0FBEu090FiLqHF6ff8C9d/zh0ZaQxTP7szLWZqIU89iba5x1zaEpUU2/XnSWdMAPwT2rBFCkKIoVABLf+yauP2Ben9/z+99c8fj4ceMG/+3llTaDE9+JUo5pAve+sMwdiemXAThFdB4iOjhen7/H9f932SPjxo7xPTBrlY2L0hClHk038OenF2VpmnEbgCNF50l1bBD3QFXVOgCrAJyTuOocACtVVT3gMSden9/609OO/9PFF5xz7B3PLZMDXJSGKGW1BaK445nF7nBUewlAf9F5iOjAeH1++eTjZ/zx0l/+4pg7WZuJUlp9cwj3vbjMFY5qbwPwis6Tytgg/rArAFyjKMomANckLh+wQQP7nfXHm667+pE31sjba9o7JSARiaNWNOOVj1V3MBx7G4AsOg8R7b+hQ3xn3/GnG6567K21cgVrM1HKW76xDu/OL88OhmPvgLX5gEkmx1J0Oa/PP/blZ/7xpu7oXfKP2av5j5UoTUgScNeVhwcHlfR8yGmXbxadh4j2ndfnH/vq8/96OyjlFT365hrWZqI0YZGAu646IuArznnMaZd/JzpPKuIZxC7m9fn7XnT+WfeOHDm8+Kl317MAEaUR0wTufXGZW9PN/wPnPBClDK/P3+ei8868Z+hQpe8z77M2E6UTwwTuem5JVkwzrgT3Lj4gbBC7kNfndw7y9b/hhuuunHb/K6tsoQjnNhClm5b2CO5/ebkrHNHeBJArOg8R7Z3X53f1Kym6/vrrrpz24KurbJGoLjoSEXWytkAUD76ywh2KaK8B8IjOk2rYIHYhi8Vy2kN/vf2sOUuqrBu2NYmOQ0RdZNmGWsxdVpkdDMeeF52FiH7UGfff88cz5q/aKa/fytpMlK6WbqjF4rU7e4Qi2sOis6QaNohdxOvzD/v1lb+8uleBN/+VT1Sr6DxE1LWefnetIxDWpoNbXxAlLa/PP+zi88+62Ofz9XnxQ9ZmonT36JurXdGYfjaAY0RnSSVsELuA1+f3DPb1v+7Ky873PzBrlU3TuRAQUbqLaQb+PmtFVjiiPQ0OZyFKOl6fP6tfadGvb7juqsMeeHWVLRLj0FKidBcMa7j/5eXucESbBSBHdJ5UwQaxk3l9fslikX7x4H23n/DBwgrr1uo20ZGIqJusLmvAkvU1WeGIdrfoLET0PT/9+323nzB3eZV147Zm0VmIqJus3FSPL1dXZ4XC2gOis6QKNoidb9xlvzzn54V9+vZ+bc5mvr9EGebxt9a4DNO8GMA40VmIKM7r84+4/KKf/7K0X3/vyx9xaClRpnnynbVOzTDOAXCE6CypgA1MJ/L6/D1KS/r+6rprLpv891e/tmm6IToSEXWztkAUT72z1hkMx14CwD9EiQTz+vyeAf1KrvnNtZcd+sCsVbaoxtpMlGkCoRj+8foqVyisvQLAKTpPsmOD2Em8Pr8E4Oy/3nnLtM+X77Bu2s7hK0SZas6S7dKOuo5+mm78SnQWokyWqM1n3nvHzTPnLqtibSbKYAvX7MTa8sZe4aj2J9FZkh0bxM4zavrUw04dM3pE6SufbOJZA6IM9+CrK7N03bgLQF/RWYgy2Mijpx1+xqiRw0penbOZtZkow/1z9iq3aeLXAIaIzpLM2CB2Aq/P75Ek6eLbb/ndxBc/3GgNRTTRkYhIsMradry7oNweDMeeEJ2FKBN5ff5sSZIuuf3W3/lf+GCjzNpMRE1tYbw2R7UHQrF/is6SzNggdo7TLr7grBEOlyf30yXbJdFhiCg5vPqJagtFtKMAnCg6C1EGOvWKi38xymJz53y2rFJ0FiJKEu8uKLdGNf1wAFNFZ0lWbBAPktfnL3a5nDP/71eXTn7infU2g1seElFCVDPw91dXusMR7VkAWaLzEGUKr89f4vFkzbz6yl9OevztdXbWZiLaJaYZePLtte5gOPY42AvtEd+Ug7BrYZpbf3/t4K07O+xfb64XHYmIksyqTfVYtak+KxrTfys6C1EmSNTmn/35lt8M3VjRaltX3ig6EhElmQWrdqC2KVhkmOYvRGdJRmwQD86Ior6FE888/aRDnnl/g010GCJKTs++v85tAjcAyBWdhSgDjPYNKJ14yokzxz3L2kxEP+Bfb3ztiUb1BwG4RWdJNmwQD5DX55cB/OKev9w84osVVZaqug7RkYgoSVU3BPDl19WWSEz/vegsROnM6/PbAZx7751/GPPhV9uk2qag6EhElKQ2bmvG15vrXdGYfr3oLMmGDeKBO9x/yJihkyeOGzqL21oQ0Y94+aMNLpi4BkBv0VmI0tiUGdMOGzpimDJw9mdlrM1EtFdPvrPWbZq4AYBXdJZkwgbxAHh9fg+As+66/cZDXv10k7U9GBMdiYiSXF1zCJ8tr7SEItqtorMQpSOvz58jSdKZf771+onc1oKI9kVtUxAfLdomB8Oxe0VnSSay6AAp6rizzzhxYH5Bb+8Hz37ObS2IaJ/M+nijc/ohJZcAuAfADtF5iNLMyT897fgSlzs777Nly0Rn6XLRjjrsXPHyN5djwSb0GjITuQOPBAA0bZmHhg3/gW/mn2C1f3sR5XBrNerWvAlDiwCShF6DpyO771gAwM4VryDSXgNP4TDkDz0eANC4eS4c2YXweEd206sj6j6zPlHtx/hLzwTwNwBrROdJBjyDuJ+8Pn8hgON//avLxr/woWrTdK6dTUT7prk9gg8XbrWEwtqfRWchSiden78EwIxrrrp4zGtzyzJiyym7pzf6TbkO/aZch9Ijfw3JavumgYuFWhBs2AzZ1XOP97VYbfCOPRv9p/0WxZMuRt2696DHQoi07YRktaH/1N8g3FIFPRaCFm5DuHk7m0NKW4FQDLM+UR2BUOwe0VmSBRvE/ZBYOvunJx8/o1eWx5P75epq0ZGIKMXMnrvZLlnwcwADRGchSge7trU46bjpPXJzcwvmragSHanbBRvKYHP3gs0dXyi5ft17KBh2AoA9D3Kyewpg9xQAAGRnDqx2D/RIByBZYOoxmKYB09AhSRY0qJ+gl3JMd70UIiE+WrjNYrFI0wEMFp0lGbBB3D+DAPiv/dUlo9/4fItsZMIhSiLqVG2BKN6Zv8UaDMfuFp2FKE0MAjDy/665bPzsz7bIegbW5vbqVd8MEe2oWQfZ2QOOHn336b6h5u2AqcOW1QuO7EJYHR5sX/AQsgqHIRpoBGDCmVPchemJxAtHdbwzf4scDMduEZ0lGbBB3EeJI5SnH3HoBFtpcd+SuUsrOfeQiA7IW5+X2SRJOhXAUNFZiNLAydOOnOws6ust/nTJ9oyrzaahoaNmPbL7joahR9FU9hl6KTP36b5auA01q15F4ZgzIUnxPwl7jzgF/aZchzzfVDSqHyNfmYnGzXNRvfwltFQs7sqXQiTUewvKZavFchaAPqKziMYGcd/1BzDsd/935eh3F2y1RDVDdB4iSlGBsIbZczfZAqHYfaKzEKUyr8/fD8Do66+7cuxb88qtsQyszYE6Fc6cIsiObMQCjYgFm1Ax/+8on3s3tHArKuY/BC3c/r376bEwdix5BvnKcXDl9vve7ztq1sGRUwRDiyIWbETfQ85FR80aGHq0O14WUbdrC0Qxd9l2KRzVfic6i2hsEPfd8crggdZRw4coH3y1je8bER2U9xaUW60W6RgApaKzEKWwEyeMH+UYMmjAwI8WVmTc2UMgMby0KD681NGjD3wz/4SBM27CwBk3QXbmoN+UX0N2Zn/rPqahoXrZC+hRfAiy+47+3mOaho7mrQuQN2gaTCOGb+YyJuYmEqWrNz7b7JAk6QoAOaKziMRGZx94fX4vgIm3/P5aZc7S7VJHiPseEtHBCUd1zF1WKUVi+tWisxClIq/P3xeA/+brrx353n+3WjJx30NDiyJQv3mfVhgNt1Si5uvZAID26tUINZWjrWoZKuY/iIr5DyLc+r+F91q2fYUexRNgsdphz+4DU49i27wH4MgphtXm6rLXQyRaXXMIS9fXQNOMq0RnEUkyzcybzL2/vD7/ed7CgqO/nPvmz6/+2xdyQ0tYdCQiSgNFBR489Jtp7Q67tTcAfrAQ7Qevz3/RMGXQjPf//exZl9w1V+bBWyLqDP282fjbr6e0Ou2yFxlam3kG8Ud4ff6eAKbecsM1/Rat3Qk2h0TUWXbUd6CsqgUAzhSdhSiVeH3+AgBH3PL7a5WPF1dwZA8RdZqKmnaoFc1WwzTPF51FFDaIP25qtidLnnn01Mlvfl4uiw5DROnlzS/KsgOh2E2icxClmGN6ZHukyf5xo9//7zar6DBElF5mfaJ6IlH9dgAZ+fnCBnEvvD6/G8Dx1//f5YVqRbO0vfb7q4ARER2MZetrENOMfgAmis5ClAq8Pn8ugOlXX3F+nrqtyaxvCYmORERpZl15I+qbg1kAjhOdRQQ2iHt3KADHCccdPemdBdvsosMQUfoxTODteWWOQCiW8ctqE+2jowBIJx430//hokrWZiLqEu8tKM/uCMUyciE5Nog/wOvz2wGcMmPaYabL5fKsLqsXHYmI0tScJdutNtlyKoAC0VmIkpnX53cAOOaIQydo+b1y85eurxEdiYjS1PxVO2CXLUcByBedpbuxQfxh4wH0uPDcs4bPXVZl5WKvRNRV2gJRfLW62tA041LRWYiS3EgAzssu+sWYOUsrLbrB4kxEXSMY1rB4XY1uGOa5orN0NzaIe+D1+SUAx9vttlb/hLFjP1tWlVbvU3P5fGz74n5sm3c/dq54GYYeQ/PWL7H1s3ux6f0boEcDP3jfqsVPoeyjP2LHkme+df3OFa9g27wH0LDxw2+ua9w8Fx01a7vsdRClk7fnb3HFdOM6ZOiEeKJ9dIzL6QxO9o8f+8ni7WlVm4ko+Xy0cJs7FNGuBSCJztKd+OG6Z30AlF503pkFdU1BaUd9h+g8nSYWakXz1i9ReuS16D/1tzBNE+3VX8OV1x/Fky+F7Mrd6/3zfFPhHfezb10XadsJyWpD/6m/QbilCnosBC3chnDz9n3avJeIgC1VrahtCjoAnCw6C1Ey8vr8hQCUKy/5RUFlbbu0s+GHD2YSEXWGNVsaENP03gDGic7Sndgg7pkfgH7KScdN+GRpVfpNgDcNmHoMpqHD1KOQnT3gzCmCzZ33o3d15w+Gxer49pWSJf54pgHT0CFJFjSon6CXckwXvQCi9PT2vC3ZHcFoRk6IJ9oHkwAYJ5903GQuTkNE3cE0gQ8XbnOEItqVorN0JzaI3+H1+a0Apvfx9m4fOnjgwP+uqhYdqVPZXDnIHTgV5XPvQvmnd8AiO5FVMOSgHtORXQirw4PtCx5CVuEwRAONAEw4c4o7JzRRhli4php2m/UIAD1FZyFKJl6f3wbgmDGjhkWK+xb2Wbg6vWozESWvOUu2yxaLdA4Ap+gs3YUN4vcNAZD9q0vPG7RyU63ZEYqJztOp9GgQHbXrMGD6jRh49C0w9BjaqlYc9OP2HnEK+k25Dnm+qWhUP0a+MhONm+eievlLaKlY3AnJidJfMKxhzZaGGIDTRGchSjJDAXh+ddkFI79YUSVFNUN0HiLKEPXNIZRXtRgAThWdpbuwQfy+wwFEpk+f4p+7dIdNdJjOFmwog82dB9nhgWSxIrvPSISaKzrt8Ttq1sGRUwRDiyIWbETfQ85FR80aGHq0056DKJ19umS7pz0YvUx0DqIkM0OSpOChkw4ZN3dZFRdyIqJu9Z8vt2Z3BKPXis7RXdgg7sbr87sBTDrUP17vldczb4VaJzpSp5NdPRFu3g5Dj8I0TQQbymD39O6UxzYNHc1bFyBv0DSYRgzfLPiUmJtIRD9u6YZa2G3W8QA6539MohTn9fl7ARg99YhJksUqO7ZUtYqOREQZZuGanZBly3jEF7JMe2wQv20UAOtF55896ovlO6R03F/JlVsKT59RqJj/ECrmPwDTNJFTOgnNW/+L8k/vhBZuxbZ5D6Dm69kAgHBL5Tc/A0DlV//CzhUvIdhQhvJP70SgTv3mdy3bvkKP4gmwWO2wZ/eBqUexbd4DcOQUw2pzdftrJUpFkaiO5RtqNdM0zxCdhShJTARg/vS0E5SFa3by7xYi6nZRzcBKtV4HcKLoLN1BMrkD/De8Pv/NkiQVrl4y56I7n1vh2bKDRymJqPtNHtkH1541dkl2ln2S6CxEIiX2Jb4XgLR43nsXPvn+lvyvN9eLjkVEGWjq+GJc/pNRn2e77dNFZ+lqPBKX4PX5ewMYdORhE60Wi9XB5pCIRFmp1sFht44BsPeNSYnSnxdAwfChgy35eT1z125pEJ2HiDLU8g21cNithwJI+2FxbBD/5xAA5umnHDtkyfpaSXQYIspckZiOteWNUQAnic5CJNhwAOa5Z5+qLNtQa6Tj1A8iSg0doRi272yPAjhKdJauxgYR3wxhmQ6g6ZBDxo9asr5OFp2JiDLbvBVV2e3B6LmicxAJdhiA1smT/aMXratNu5XFiSi1zF+1IzsU0X4qOkdXY4MYVwigV3FRH724T++C1ZzfQESCLV1fA4fdOgUZMJSFaE+8Pn8ugAGFvfPDA/oV9V2+Mf1WFiei1LJ0fY0kxfdDTOvRhmwQ44YCwM/POmXQ2vJ6nRvwEpFo7cEYtla3RQEcLToLkSAKAOm8c34yaMPWBj0U0UTnIaIMV1XXgUBYswMYKzpLV2KDGDcZQPthk/1Dl66vt4sOQ0QEAEvW7vSEo9oxonMQCXIogI6pRx4+auHaOtZmIkoKX67eYdd04xTRObpSxjeIXp/fA2CwJEktQ4cM9K3axOGlRJQc1pY3WmKacazoHETdzevzuwCMcNjtLSOG+nxL1tWIjkREBABYtKbGHo5o54jO0ZUyvkEEMAiANPUIf6+Yblp3NgZE5yEiAgBs2t4Cp93aH0AP0VmIutkQAJbjZ07zNraGjKa2sOg8REQAgPVbGyHLlv4A+ojO0lXYIALjAERPPHa6b6Van9YTTokotWi6gW3VbSHEV3IkyiQTAESnHTmp3+qyRqvoMEREu+iGibVbGtN6u4uMbhAT21uMA9A8duyYYSs3N3B7CyJKKsvVOk80pk8XnYOou3h9fhnARACNI0eOGLK2vIkNIhElldVl9Z5wRJsqOkdXyegGEYAXgMfpdMR8A4qLVm9uEJ2HiOhb1mxpsEZi+vGicxB1o2IANptN1gb2KypaW94oOg8R0bds3NYsabrBM4hpygdAmjHt8MLGlqDeFoiKzkNE9C3qtmY47bICwC06C1E36Q9AOnra4YUt7RGjpT0iOg8R0beUVbXAaZf7I01rc6Y3iIcACEyeOLbP5sqWTH8viCgJRWI6dtS1hwBMEp2FqJuMARCYNmVy6dqtjazNRJR0YpqB6oaOIOLzpdNOxn7wen1+G4ARAFoUZXBJWVW7TXQmIqI9Wa7WuWOawXmIlPa8Pr8VwDAArcOHDRuwcVsL1wYgoqS0uqzBZZrmZNE5ukLGNoiIL01rBaD1KykpKatqEZ2HiGiP1pQ1yKGIdoLoHETdoC8AGwCtf7/iErWiWXQeIqI9Wre10d4RjM0UnaMrZHKD2BeA5HQ6LN7eeblbq1tF5yEi2qMN25rgcsgjAThEZyHqYiUAJN+AUrfH7XRW1rWLzkNEtEfqtmbYbZaJANJum7xMbhB9AGJTj5hU0NAc0MJRXXQeIqI9CoY11DcHwwDGis5C1MWGAQgfe/SU4k3bmzTTFB2HiGjP6ltCiGmGjPjCWmklkxvEIQDaD/WP67u5ksNLiSi5lVe3WgEMF52DqKsk9iYeDqBt/NhRxRsrWu2iMxER7c3GimYdwKGic3S2jGwQvT6/HfF9loLDhiolZTvaWISIKKmV72h1R2P6KNE5iLpQDwC5AMLFxcVF22ra0m7YFhGll9Vl9Z5QRJsmOkdny8gGEUBh4rtRWlpcUlbF+YdElNwqazukcFQ7RHQOoi5UDMAEgMLe+flVtR2C4xAR7V35jjYpphlpt9VFpjaIfQBIDrvd0rcwP698BxtEIkpuVXXtkK0WRXQOoi7UDwAcdrulV262Z2dDQHQeIqK9qm7ogF22DBCdo7NlaoM4EIA25Qh/flNrUAtFNNF5iIj2amdDAA6bNR+AS3QWoi4yEEBw/NgRPVvbw1okxsXjiCi5NbSEIMsWDwCP6CydKVMbxKEA2idPHNeHC9QQUSrQDRNNbeEg4gtsEaWjEgDBcWNG5FfVtXP9UiJKeqYJNLaGggAGic7SmTKuQfT6/DbEi1BgQL+S/O11AS5QQ0QpoaKmHYhvA0CUVhK1uQBAeMigAfnbawOy6ExERPuiqq4DSLODt3v9AFYU5UUkJozvjaqq53daoq7XO/HdyC8oyFfVkNAwRET7aktVS9a4IQXDrdaMO7ZHu0nT2pyH+GsyS0pK+6yqDFhFByIi2hfbdra5xw3pPcRiSZ+Fl3/sr4wyAFsSX60ATgNgBVCVuO+pAFJtjGZfABIA5OXm5tY3s0EkotRQWdtuCYa1iaJzkHDpWJvzkWh6vYW9e1fVtQuOQ0S0b6rqOuRgODZWdI7OtNcziKqq3r7rZ0VRPgZwoqqqC3a77ggAt3ZdvC7hRaII5fbMzm5oYYNIRKmhsq4DkkUaLjoHiZWmtbkAiYPWhQW5PRNDtoiIkl51fQcMM72mf+zPOKXJABZ957rFAA7tvDjdwgsgbLPJUo9st6uhlQ0iEaWGHXUdcNqtffEjB/coo6RLbe4HIDKgf4nbYrFYW9ojovMQEe2T6voAHHZrP9E5OtP+NIgrAdylKIoLABLf7wSwqiuCdaHeACKDfQM8wVBUj2mG6DxERPskEtMRDMciiC+0RQSkT20uBRA8ZOzIvOqGdu49RUQpo6UjAgmwIT6XOi3sT4N4IYDDAbQqilKL+LyHIwBc0AW5ulIBgPAwxZfT0BLkJktElFLaAlEN8c8xIiANarPX55cAFAEIFRf1yW5qDYuORES0X+qagyEAg0Xn6Cz7PExJVdVtAA5TFKUE8YVedqqqur2rgnUFr88vA8gB0DKgf0lOXXNQdCQiov3S2hFFcW82iBSXDrUZQA/Ej75rBb1y3S0dUS7TS0QppaElJBX3zu4jOkdn2a8PYUVRegGYBmCqqqrbFUXpqyhKcZck6xo9ABgAUNTX26OuOcx5PESUUprbwlbEV3wkApAWtbkXEovH5eX1zGrpiLI2E1FKaWmPWBH/LEsL+9wgKooyFYAK4Bf43+pogwE82gW5ukrOrh8Ke/fOq28Jc58lIkopTe1hOzjElBLSpDZ7dv3QI6dndlsgmj6biRFRRmjpiDqQiQ0igL8DOFtV1eMA7JpAvhiAv9NTdZ1vGsRevXr14h6IRJRqWtoj9phmFIrOQUkjHWpzFhJ/j/TIzs5u7YgKjkNEtH9aOyJyTNN7i87RWfanQeyvqurcxM9m4nsUqbXceg4SrzkvNyennnsgElGKae2IIhLTikTnoKSRDrXZA0ACgOxsj6c1wC0uiCi1tAejiMT0vqJzdJb9aRDXK4py7HeuOxrAmk7M09W8AGIA4HY5nW0BHqUkotTSFojCMMy0mQhPBy0danMeErXZk+V2t/EMIhGlmPZ4bU6b0T37c4TxtwDeVxTlPwBciqI8DuBkAKd2SbKuUQggDAA2m2yNxLjLBRGllrZABIDEOYi0SzrU5p6In/WEJ8vl4sFbIko1bcEoACnz5iCqqroIwBgA6wA8A2ArAL+qqku7KFtX6A0gAgA22WqNskEkohTTFojCakmfIkQHJ01qc08AMUmSkOV2Olo7OMSUiFJLeyAKi0XKE52js+zzGURFUcaqqroKwH1dmKerZQMIAIDNxgaRiFJPa0cENtnSQ3QOSg5pUptzAMQK8vPsum6YUc3gKqZElFLagzHIViltavP+DDH9RFGUegCzALysqurWLsrUlRwA2hx2u8UiSZKmmz96ByKiZBIIxSBbLS7ENxaPic5DwqVDbc4B0FJaUpTVEYzo2M89momIRGsPRmGTrbsW3Er5BmN/GsQ+AI4DcA6ArxVFWQfgFQCvqapa1xXhOpPX55cA2AEYOTnZtmhMN8AiREQpxjCBaEyPOB1yTwD1ovOQcKlem60A3ADq3S6nHNOMlP/DiogyT0wzYBimYbVIHgDtovMcrH1uEP+fvfuOb6M+/wD+uX0nyTvO3ktZhExG2AQIs0BbZgsFyt6r0AIt7a+UQlv23jMEwsokA5wdJ1H2tBVHznYUJ7bjqXl3vz/uLMRIsJyTT5Kf9+uVV+yLv+cniazvPd/xfL1erwpgJoCZbrdbgbEB/jYA/4MxM5fqWPOXnp3logSREJK2VE3XkF7HGJAkyYC+WYE52svf2NkAACAASURBVM5xLKPplB8SQtJTJKpGBZ51IAMSxIQTJLfbLQO4EMAVAMYAWGx1UEkiANAAIDvLxYcjtL6UEJKezIdoShBJTBr3zQ40J4gsx2iUIRJC0pSuQwfA2R2HFRIpUnM+gKsB/ArAFgCfArjN6/X6kxSb1YTmD7KzXQIliISQdGU+RGdEJ0SOTgb0zRzMBJHlWEan/JAQkqbM8a2M6JsTGYH+H4xN8CO9Xq8vSfEkEw+zE3I6nUI4EqVeiBCSljTjKZpmEAmQ/n1zbCUTz3MM5YeEkHSVSYO3iexBHJLMQNqAgOYE0aHw4YhmcziEENI6mdQJkaOTAX1z7EgLc4mpnbEQQkirtZslpm63+1Gv1/sv8+P/O9zXeb3ev1kdWBLE/q5OhyIEI1E7YyEZ7rl7T4n07JSdEW8SJDXoAMOyrMoAAAMRQIPNIRGbZFjfHEsQWZaK1JDkkQQOrz50ejTXJVOBQmIZHWA4ljUOVmfAIUP65l+aQewe93GPw3xNurybx/YgchzH6DSBSJKopi6oL108f85Tz7y+1u5YSGZQVbXbVZdd9NA/Hr2vAYAKIGR3TMQ2mdQ3fz+DyLG0xJQkTZZTgCSw6rEnnvcfu2MhmUNV1e43XHv5A3++/9YmZFDffMQE0ev13hb38fXJDyepYgliIBiMCgINIJHkmVm8U7zh/FOOe/ivT3vsjoVkDPWNdycF//HofU12B0LslWF9c1yCyLEaVakhSSKLPIKhcLjmUG3E7lhIRlGff+XdoJkgZoxEqphOATARwHSv1xtMXkhJE/u7BgLBqMhTgkiSZ623Espvjsk587RxI+YtLK6yOx6SERoB0Np48gMZ0DfH7UFkGU3TmSN9MSGtpUg8GhsDOg4/605Ia9TBmDnMKIlUwVsI4E8A3jY7pE8AfOv1etNlsWYsI2xsCkQFgbaHkeTRdGDOit3May/8u8k94rS77Y6HZATV7/OkYwJAkivd++bv9yByLIP0WRpL0owi88jPz9sOgPpkYqWM7JsTqWL6HIDn3G73ABhnLj0PIM/tdk/2er3p8MMWG3kPBIKqwHE0SkmSau6KndzlZw28xO/z3ApjhIkQQiyVAX1zbPC2tq4hLIvUN5PkcEg8WJY55Pd5Gu2OhZBUl/A6S6/XW+b1ev8B4EoAGwDcYXlUyRFLEBubmqKiwFInRJKqpj6E9WUHNE3Xr7Y7FkJIZkvjvjnWFx84UBV0KiL1zSQpFIkHA6bW7jgISQcJHbTsdrv7AbjK/FUI4HMAhy2xnWJiCWJtbX1EFHjqhEjSTVtc7hzSp+BBpyK8AVo6RQhJgjTvm2N9sb/yQNCh0P4PkhyyaMwg2h0HIekgkSI1KwEMBDAVwIMw9jikU8GEWKyVB6pCikydEEm+9WUHEIqonZ2KcByAFXbHQwjJLBnQN4ebP9jnrwwqksAxDEC1TInVFJmHwLPVdsdBSDpoUYLodrsZGCOSr3u93nTdSxXrMOvqG6IAwHMsomq67OMn6UjXgemLy5Xfjh9wn1MWrrQ7HkJI5siQvjlW3CESieqhcDTqkHi+MZhOOS5JBw6J10WBq7E7DkLSQYv2IHq9Xh3A4wAakhtOUkURt5QlFIpEnEpCK2wJaZVvPTtZgWMvBpBrdyyEkMyRIX1zEHF9c1MwFHYqwhG+nJDWcSpCBOn9s0JIm0mkSM1aGMtY0tUPOqFAKBxxSNQJkeSrbQhjdWmlpmn6tXbHQgjJOJnVNwfCYZdDtDEckqmcihAFUG93HISkg0Sm0BYAmO12u98HsBtxBTe8Xu+71oaVFCHEJcTBYDjsUHinjfGQdmTaYp/j2AEdHnDIwkugYjWEEOssQHr3zWEYMTMA9EAwGHTKNHhLrOeUBRWUIBLSIokkiCcB2A7gtB9d1wGkfCfk93nUzv2OC8NIErXGpqambKeYZ3dcpH3Y5KtCYyCa75CFkwAssTseQkjGSPe+We/c77gmGM8jkaamQMDloASRWM8h8xooQSSkRVqcIHq93jOSGUgbae6EwlVV1dUd8xzd7A6ItB/TFvscV57tvt+pCJQgEkIskSF9cyPiEkTag0iSwWHMTFOCSEgLJHLMxWH3K3q93nQpBRpLECsr9x/smNe7eVkLIUlXtHIXe815g88HUACgyu54CCHpL0P65gYAeQDQ2NjQkOXIsjkckokUiWdARWoIaZFEitREAUQO8ytd1AMQAGD3nn2HOucr6RQ7SXP1TRGs2OxXVVW7zu5YCCEZIxP65gaYA9aVlZU1hbmyanM8JAPJEseCZhAJaZFE9iD2+dHnXQD8GcB068JJuv0AegBA+fZdh849z0HFQkibmrGk3DF6UMf7HRz7LI6yWI0aqH+NFeTrrImMkJ/QGF64EMB8uwMhR5QJfXMsQSzfsbvmvGPGRgFw9oZEMo0kcBwoQSSkRRLZg7jzR5d2ut3uPwBYCeAdS6NKngoAMgCUeH2HCvMdicygEnLUtmyvRl1jONshC6fjKB+8WVHZ1bh1JQ7OfFW2JjpCvtfh/FubXENO6gdKEFNahvTNsdU9W0q3Vd9wnYu2fhDLiTwngBJEQlrkaE+KzwZQaEUgbSS272uLt6ze5ZB4nmMRVdNlmwbJBFMX+Zy/P3fw/U5FOKoHb4bj33H0H/U3ANBCTdYER0gzXdcB0FK/9JRuffN+mAni6nUbawrznALLABqt8SEWYVkGLMdwMGpREEJ+QSJFaj7CD5fEOQCcCuBjq4NKokMANACIRKJ6bV1jU2Ge4tx3sNHmsEh7Mn/Vbub6C4eeDaAjgMpE2o4f3PVSACc3f/7qpKkV+cNO7VO/ejaNuBNrsSwliGkgQ/rmaph9c21tfbQxEAwV5CrygZqAzWGRTKGIHFRVD7M8Q8MOhLRAIksstwHwxf1aBuBqr9d7VzICS5JDiKtaWn2orq5TvsPGcEh71BiMYumGCi0a1f7YiuYBGIllGEB4xpefLXeOOjedilGQNMGwnA6jAApJbZnQN1cjLsk9WFVb26XAaWM4JNMoMg9V1WjEgZAW+sUZRLfbPRpAyOv1/sP8vCOA5wEMBbDM7XYv93q96VI2uBZxSbF5FmIXG+Mh7dSMJduVE4Z1uYfn2adhjpy3kAfA5TAqFGqzvpxUdvO9D4Wk7m4xtMeblFhJO8XQDGIqy7C+uQZxRWkOHDx4sHOBs9OGbQdtDIlkEkUSoGp6MpaXOrVQYD0YJp2WdJO0otewojICxiRXm2nJEtPnAfwDwCbz8zcBdDV/vwrAfwDcnpToLOb3ecKd+x1XB0AEEN6/f/+Bjnk96SxE0ua27qpBdV3Q0a3QdRaAuS1tV1RSUT1+cNfVAIYB2K/rOpYuKFp2wsgJZ4T2eOl0aWIZRpB0ACG74yCHlTF9M4x9YQEYzyTRffv27e9S0HswElvlRMhhKRIPTdeTsZ+oo65Fu+x5815ajkaSovvNL/AAcpCCCeJgAIsBwO125wK4AMBQr9e71e12TwNQjPTphABjz1cBgPDeCv+hYaMHRmAkjIS0qakLfa5rLxhyv0sRWpwgmuYBGNP8ycQ3Xlw3flrR+EOyC1owXSYMSKrjHNmAsfSPpKaM6Zv9Po/eud9x+2EU16nfsWtPzQmnDImC+mZiEVnioOt6MiqYZmmhQFRtaNNnd9Ku6DoSW2lmiZaMzvEw9jsBwAkA9nm93q0A4PV6dwPITVJsyeKHedRF6VZfdY9OWbRhmdhiwZo9jMCxp8MY9U/EVhgP7k4AqNi9M7Ddu6XMeczp9FomluEUFwuA1vilrkzrm/cAUADAu7W8uksHJ72fEcs4JB4A6qy41/jBXeXxg7s+PH5w16ee/NMdfwo21EpW3JeQn8UwDFI0QdwM4DLz4ysBfNf8B263uxuMfX3pJHYW4ryFxf7unbIFnqNVLKTtBUJRLFq3R49EtZsSaVdUUqECmA1jJhwAMOWzictco6lYDbEOKzkFxB0NRFJOpvXNu2H2zavXbaruXJB1tMdwERKjSDwYhrEkQYQx0+0GwDizciQtRLVvSPIwDMvAhnoALcmMHgbwhtvtroaxhOXpuD+7AsDSZASWRLEHnqrqQ5EDVbX1vbtk2xkPacdmLtkuq6p2F+IKNLTQSvN3FgDmTpm8K6IxAbnnUEvjI+0VA0aUJNAS01SWiX2zDgB79u4LBoKhcJcOVMmUWEOReLAMY9U6UBHGjE4gJy8PCFOCSJKH4UUBQJvvH/rFBNHr9S4B0BPA2QD6er3e+FKJMwHcl6TYkiV23hIA7Ny1Z/eAHum2EodkCt/eWlTWNIkAzk2kXVFJxSEAK2AceQFd17Fo3txlzpETaBaRHDVWdgCqGoJRLZekoAztm2PLSnfurqhw98yzMRySSRSJh8CzVg14xZaUOlxZohYO0DI0khwMC7AsB6DND2xv0Yva6/XWe73e1V6vt/5H171er7ciOaElzT7E/b1LvVt3DuyRQ2d9EdtMWejLamgKP9CKpgsQ11FNfOOl9Y7+IxnWQTPi5OiwShZ0NZKMgg7EQhnWN9cgrqK41+stH9gzh45ZIZZQJF4XBa7GotvFiic5nC4J4QBVwidJwYoyoKphxA2etdn3butvaDe/z9MI4ADMzfDLPWsrBvbMpU6I2GbRur3geXYcgB4JNi2D8Vp2AUDlvr3BbVs2eF3Dz6DiDuSocEoWdE2lsnykLdXCOO5CBADP6vV7B/XKpcFbYgmnIkQAWDXoJcEczFAcTlEPBxLdIkJIizCiAl1TbVnD3O4SRNNWGJuMMW9h8f7OHVyCJNLPN7FHKKxi/uo9CEfUWxJpV1RSocEoVpPffO2rSR8tc42aEKWjPcnRYJUsQNepQA1pM36fR4fRN2cBwNyiJft6ds4VeI7ey8jRMxNEq/ZxxWYQFUWhGUSSNKykQNfUJlu+tx3fNAV4YS7Na2hsUv2V1TV9u+bYHBJpz2YuKZc0Xb8dLTubNN4qGHtqOQCYP3PK3mA42qD0OcbqEEk7wilZAMNU2h0HaXe2wDy+52BVdfhgdW1dH+qbiQWcsqDBuhlEEebzs0NRFI2K1JAkYUUF0LU2338ItN8EcS/iCtXs2LlrFxWqIXba6a9HxYFGHsCFibQrKqmoA7AcQCFgFKtZ8N2cYgcVqyFHgVVcYDh+n91xkHZnN37QN+/ePYAK1RALOBVLE0S5+QNFkRUtHLTotoT8kJEg6rbUA2ivCWJzoRoGALaUeHcP7JkTPnITQpLLqmI1n7z50kZHn+EM56JBD9I6nCtXYwR5r91xkHZnL+KeS7aUlO5w98imwS5y1BwyD1iXIDphnksny7Ks0wwiSRJWdgI2HTfVLhNEv88ThJEkOgBg6fLVewfSDCKx2dL1e8Fx7BgAfRJs6gOwH+benarK/SHvhrVbnMPHa0duRsjPEwt7NjIMs83uOEj7EldEzgEAi4tX7nX3yqOiW+SoySLPIAkJoijJEs0gkmThsvLBcEK5Hd+7XSaIplKYhWoWLfEczM9ROKec6PYvQqwTjmr4zrOLCUXU2xJpV1RSoQOYBSC2FuvLTz5Y7hp5jgqmPf+Ik9YSC7o3FwwhpK2VwhzsWrh4xYGCHAf1zeSoyRLHwroEUQEQBQBRlEQtRDOIJDn4rIIoKynb7fje7fnpsQyAAAChcFjbudu/f0jfAptDIu3dN8XbJej6LYirktZCq2Hs3eEBYNGcGfuaAk11St8RVodIMh4DPqdAgfEeSUhbixWRC4XD2p6KygPuXvm/0ISQI5MEjoN1VUwdMGcQBUkSqUgNSRY+tzAIwJYzbdtzgrgXcQdPrl6zbvPYwR3pzCViqz2VDdjpr2cAXJxIu6KSigYASwB0bL42b87spc6RE2hvLUkIl5UPXVWbANTZHQtpl37QN2/YuKlk9KBCOquYHBVR4ARYN4MYSxB5URJoDyJJFj67UAUliG3Ob/7OAsDUmXO3HjekE+11ILabusiX1dAUfrAVTRfBnBUHgE/efHGT3HMww2XR6DtpOaGgK/RoxJYlLYTAqA+gw+ybZ8wu2jp2SEdKEEmrsSwDlmU4AFadJ/f9DKIo8bQHkSQLn5XHghLEtuX3eSIAymHuQ1y4xHNQ19Vwz85Z9gZG2r3iDfvAssxwAAMSbLodxuh7NgDU1lRHStat3uQacRYVqyEtJuR3BcOym+yOg7RPfp8nDGAnABcAzJq70O+QeK1LB6e9gZG0pYgcVFULIW5m+mhvCUBlGAacKPO0xJQkC6tkS6AE0RbLYT5M67qOTZu93rGDaRaR2CuqapizfCcXDEfvSKTdzxWr+fyjd1e4RlCxGtJyYmH3MCs719kdB2nXVgHIAYy+eXNJWdnoQR1/oQkhP0+ReURV3cosTgYQVRxODtABlXYnEesxggyGZRkAtXZ8//b+1OiN/2TBoqWlxw0upD1bxHazincIDMP8EXEH8rbQWgARmMVqls2fu7+u7lCNY8Boq0MkGUrs2CsAqmBK7FUS/8miJctKjh/SMWRXMCS9KZIATbM8QVTzOhRKajhIy59JUgh5naBFQn5YN/OdkPaeIFbAqGolA8BnX87c0ad7Lk8ltYnd9lU1wrfnkA7g14m0KyqpaAKwGHHFaopmf1PsoGI1pIWE/K4cfjR4Rkgb2w0gCLOa86efTysf1LuAl0TO3qhIWlIkHpquN1pxr/GDu3Iw9vprufkFohoK0qozkhRCQTdA00rt+v7tOkH0+zwaAA+AfACoOVQbKd+xd++IgbSUhdjvKIvVxI7JmPTWy5vlrgMYPqfQuuBIZuJ4cI5sGcZ+VkJs4fd5VBhH9+QDgL/yYGjX3v2Vw/t3sDcwkpYUiYeu61ZVMBVhzuhk5+ZLWiRIe/xJUggdummsJK+16/u36wTRtB7mcjwAWLlqzabjhhRGbIyHEADAik1+gGEGARiSYNNdMIo85AJAQ11tdNMaz3onFashv0DI6wI9EjoAY5kyIXZai7iBrjVr1m6io6hIaygSB1h3bI8EM0HMyskVtRAVqCHJIXXs3cRwwma7vj8liMA2xJXU/mrq7G2jB3diGMbeoAhRNR2zirfzwVD0zkTaxRWryWm+9tn7b63IGnGWBpaWaJHDk7r2h65pHrvjIARG3wwADABMmUFHUZHWUSQeDBirCn3EBi1c2dkSVTAlySIU9tRg43aPdp8g+n2eAIBSmLMtntXrawKBUFO/brn2BkYIgNnLdggsy/wBRlntRKwHEIZ5LuKqpQsP1lRVHXQOHGt1iCSDKL2GNXGK61u74yDE7/PU40dHUUHXInQUFUmUIvHgOOaQRbeLLTF1urJEnWYQSZIIOYUKKEG03QqYZy4BwMZNW0pppJKkgsqaAEp31mgALk+kXVFJRQDAfMQVq/lu1oxix8hzqVgNOSy511AVQLHdcRBiWo644y42bCopGTesCy2VJwlRJB48x9ZYdDup+QOHK0vUwgF6jiaW47LyoetaEIBVAxsJoxe2YSvMZSwAMGX67I2nj+pKe3BISpi2yOdqCERaU6xmKeL213769itbxE69wed1ti44kjFY2QnemSsC2Gh3LISYflDB74uvZ6w7c0w32odIEuKQBV0UOKsSxNgSU4fTJSHcRBuSiOXEDt2hR8PldsZACaJhP4BqmMv4vpo2Zw/H6qGBPfOO3IqQNrCyZD90Te8LYHiCTffAqEaZBwBNjQ3q+pXL17pGnE3nNpGfkLoNhBYJbgRAD+AkVTQfRSUBRt/Mcwj3705bQEjLORU+AsCqKqYSzAkFxeEUEQ7Sxn5iOalLf53hxcV2xkAJIgC/z6PDWGaaDxhLWZYWe9acMZpGKon9NE3HzKXbxUAoenci7eKK1WQ3X/v0vTc8rmPP1MHRWZ/kh+Tug1RWVObaHQchzcyjqJYDKACMvnnZilVrzhjdjQa5SIs5ZMHKBFGEmSA6HA5ZDwdoBpFYTu4xuIEVJFu3e1CC+L01AGIjQe98+Nm600Z2A8/Rzz6x3+zlO3iOZa5G3F7ZFtqIuAOn13uKq6sq/fud7uOtDpGkOaXP8AaG45fYHQchP+KBWWwLAD6Y+MWG00Z201mW+mbSMk5FUJGMGURZlqmKKUkGqWt/FsAqO2OgBPF75TA2gzoAYNWaDYcqD1ZXjR7Uyd6oCAFQVRvE5vIqFcCVibQrKqkIApiHuGI1c2dOK3aOomI1JA7DQuzUW4ExW0NIKmnumxUAWLpsVdWh2vpDIwcW2hsVSRtOWdBhLFW2QqxIjaLIihYOWnRbQgycMwesKLP4/qgfW1CCaDKXssyDuZQFAObNX+Q5a2w3epAmKWHqIp+rsfXFajiYo56T333dyxd014WCbpbGR9KX2LEX9GhkPwCrCjkQYom4vrlD87Wi+QtXnD22O/XNpEUcMg9YN4PoBKACgCzLMh1zQawmdukHLRzaBPM4FbtQgvhDqxD3b/LKGx9uHt6/kM11SUdoQkjbWOutRCSq9QAwOpF2RSUVFTAq9eYBQDDQpK5dsXS1a+Q5tI+HAADk7m4wDLPI7jgIOYw1iO+b3/xw08hBndhsp3iEJoQYFIlnkIQEUZRkSYvQDCKxltx1gMaK8gK746AE8Yf2A9gBIBcA/JUHQ+s2lpaMH9udzkQkttN0YMaScqkpGLmnFc3nAoidMD3pnddWOo85TWd4esAixv5DVnIU2R0HIYdRAaMqczYA7K3YH9xcUrbttJHdqG8mv0gSORbWJYgOmJWeRUkSNZpBJBaTewxuYHjB9u0elCDGMauZFsE8mBcAJn76pefcE3pRNVOSEuau2MnxHPtbxFUmbaGNAAIw909sXrvqUGXFngrnoBOtDpGkG5aD0udYAcYgAiEpx+ybv4W5CgIAvvhquufcE3rSecXkF0kCx8HaBFEFAEGSRSpSQyzFsJC6DpAALLM7FEoQf2odjB9+DjDOXdK1SNMx/TocuRUhbaCmPoT1ZQc0Xdd/l0i7opKKMIDvEFesZs70KcscVKym3ZN7DIauRXcC2Gt3LIQcwVoAGsy++ePPpu5wyGyEzismv0QUOAHWFalRYCaIvCAKOiWIxEJip96Aph4AsM/uWChB/BG/z9MAoBjmg7Su6/hu3qLl557Qg0YqSUqYtrjc2RSMPgCz6EwCimH8zDMA8Pn7b27lcjtqQmFPq0MkacTpPj7ECvIndsdByJH4fZ56GEdeFAKAqqr63G8XLP31aX2obyaHxbIMWJbhADRZdMvvZxBFiacZRGIlpfcxOlh2lt1xAJQgHs4imOfGAcALr763bvTgTkxBjmxjSIQY1pcdQCiidgaQ0GGGRSUVfgAlAPIBIBIOaauKF6+kYjXtm3PwuCjD8V/bHQchLbAIcccMPPXsa6uPHViITvkOG0MiqUyReKiqFoJ1FSEVAFGGYcCJMq+FqEgNsY5jwJh6VlQoQUxh5QAOwDyUfM/efcHi5avXXHpaP3qQJrbTdWDaIp/SGIzc24rmc2G+rgHgk7deWeUadorOCFSptz0SCnuAFaUAjD2qhKS6rYg7r7jyQFV48VLPyktO7Ut1AsjPckg8oqpu5TSfAkB1uFw8oAMavfSIRVgectcBCoCFdocCUIL4s8xzl+bAnGkBgKeffXXJWWN76FRWm6SC71buYgWOvRhxRRtaaDOARgAyAGzdvKFu364de1xDTrI6RJIGnAOPUwHmS9h83hIhLeH3eVQAMxB3JuJ/nntt2RmjuyPLIdgXGElZssRD03SrlpcCRt+p5hUUimo4SJMGxDJS1/7QIqGdAKrtjgWgBPFIVsJYZy4AwKYtW+vXbSzZcuFJvTV7wyIEqG0IY3XpflXT9GsTaVdUUhGBMYtY2Hztm6lfFVOxmvbJNfTkRlaUv7A7DkISsBxABOY2kBKvr2HDZm/p+eOobyY/pUg8NF1vtOJe4wd35QDwALScvHxRDQVpYI1YRukzXGV4YYbdcTSjBPEw/D5PHYyqj52brz3zwhsLLzy5j6ZIvH2BEWKatrjcGQxH70fixWqWIa5YzdcfvbONceZFxc59rA6RpDDOlQs+r7OAFFnOQkhL+H2eRhiDXJ2ar7346tuLLjq5jyby9EhDfkiReOi6ZRVMRZirLbJz8yUtHKRBCWIZ58DjGllBmm13HM3o3fTImg+O5gCgeMXq6q3btpefe0JPGjUittvkq0JjIJIP4ORE2hWVVByAseesAACi0Yi+YslCj3PEhLTYTPHs0j24cnIJbp1WFrvmqw7g3m98uGP6Ntw9cxu8B39+RdE7q/24dVoZbp1WhoXba2PXn168G7dNK8P7a/yxa5M2VKJ4V13y/iI2c/QfAz0a+Q7GbAwh6WQBjAEuDgDmL1p+YM/efXvOGNPD1qBI6jEG9HWr3sglmAliVk4unYFILMM5cyB26C7CeG9LCZQgHoHf5zkIYAniRipffu3d+Zee3i/Kc/RPR+w3dVG5ozEQua8VTb8D4Gz+ZOKbL612DRkHRkz9Sr1n98/DE+N7/+DaO6v9+N2xHfHKRf3x+2M74Z3V/p+08+yph686gFcu7I/nz+uHL7ccRGNYxfaaICSOxWu/GoCtVQE0hlVUN0VQejCAcT2z2+hv1fZcQ0+u52TnJLvjICRRfp+nCj/qm9/9cNKC35zeN8Imup6CZDRF4sGAqf3lr2yRWBEKV3a2RAkisYpjwBhokdB3AEJ2x9KMspxfNhvGPkQWAGZ9u9C/z7+/4swx3e2NihAARSt3sQLPno+4og0ttAVAPYyKbNi+tbRhz/ZtO11DT7E6RMsd08mJLIn7wTUGDJrCxmqfpoiKAuWnBSt2HQpiWCcnOJaBLLDokydhdUUDOAYIqRo0XUdU08EywEfrKnHNsR3b5O9jB1Z2QuruFgGkRDltQlrhWxgP7AwAfDJ52s5wKFB73NAu9kZFUooicWA55pBFt4vNILqyskU9RAkisYZr6Cn1nOKaaHcc8ShB/AV+n2cfgFUAYk+Lb737fJ9jHQAAIABJREFU8bzLx/ePsDRUSWzWEIhgxSa/qmradYm0KyqpiMKo1BsrVjPz68+XOUedl5bFam4Z2xnvrPbjmi9K8fYqP64b1eknX9MnX8bqvQ0IRjXUBqPY4G/EgcYIeubKyJF53DXDh+O7Z6OiPgwNOvoXKDb8TdqGa+gpuh6NfAvjyABC0o7f59kNYAPM9zBd1zH5y6nzLz+zX1q+h5HkUCQeAsdaVRUyNoOoOF2iFg7QMzQ5aowoQ+4+SEKKDdjSi7tlZsIobcwAwKTPp+9qbGioPml4V3ujIgTA9CXljlBYvQ+JF6tZbv7OAMDUSR+U65IzInXtb2l8bWHm1mrcPLYzPvrtINw8tgueL977k68Z3TULY7q58MCscjy9eDcGFTrQPMZz69gueOWi/vjN0A74cF0lrh3RCZM2VOLJhbswa2tKVJy2VPbY8xs42fmS3XEQcpS+gXkmIgC8+Nr7JQ4JjScM63yEJqQ9cciCLgqclTOIxn2dLgnhJpolIEfN0XcEtEhwFQCrlkJbghLEltkJ4/y42DK+jz6ZXHT5+H5hht4eiM1KdlSjrjGcDeCMRNoVlVRUAVgHcwReU1V92aL5y50j06NYTbzvfIdwkrlf8JRe2fBW/fzSn6uGG/sUnzy7D6AD3bKlH/z5sl11GJAvIxDVsK8+jEdO64klO+sQjGZOsTqxcx/wWfkhGPtQCUlnXgC7AOQCQCQS1V978/2Z1184OMLRCh8CwKnwERjbKazw/QyiwynqoQB3pC8mpCWcQ05u5JSsj+yO48coQWwBv8+jA5iGuKIer7/zSRmrhWtPHUl7EYn9pi70OVtZrKYI5j5EAPj4zZfWOgedAFZyHKFJ6ilwCNi43zjqap2/Ed2yxJ98jarpqAsaue/2miC2HwpidFdX7M+jmo4pJVX47bBChKMamgd/mvcmZorskeeEGJZ/DUDmZL2kXTL75qkwE0QAeOfDyb762kP7zzmeqo0TwCkLVieILAA4HA4ZkQCNQpCjw/Fw9BvJw3gfSymUILbcVgDlAPIBY7/Df59/bfr1FwyKSCINIhF7zV+9mxF49mzEVfVroVIY+9AcALC7fFvjzrLScuewU1P24eqpRbtx36xy7KkN4fdflGJOWTXuPqEr3lrlx+3Tt+GDtftx94ndAABbDwZiy01VXceDc7bj5qlleGHZXvzp5O6In2WYXlqFs/rlQuZZ9MmTEYrquG1aGfoXKHBlyM84w4twDTtVZ3jhbbtjIcQi6wHsg5kk6rqOp599eebVE9wqnVlMnIqgwboEUYK5JcOhKIoWDlp0W9JeOfqPhq5GN8N4D0spjK6n7HNgyunc77jhAO4HsKP52owv37+ibD8z8JO5WynZJra6/6pRgVNGdHuC59knE2k3fnDXcwFcDmOpFi684pret9xx11X+N+/56TQcSWuuYaeiYMIfl3KyK6GzMwlJZZ37HXcMgAcBbG++Nu3zdy/3HeTdn8zxUt/cjj11x8m1Q/sWXA1jv+pRGT+469kArgaw89VJUy7P2+0Z3LBh/lHHSNqvzlf9tcHRd8TdAN6zO5YfozfOxGyC8RCd33zh0cefnnXRKX21wrzMrXhI0sP0JeVKRNXuQeI/1yvM31kAmDn54x0qK4ak7m5L4yP2yx5zfj0nu563Ow5CLLYJQAniqo3//Yln5lx0ch8tPzv1z3YlyeOQeQBosOh2TgAqAMiSJNMxF+RosI5syD2H8AC+sDuWn0MJYgL8Po8G4GMAOTCXGazfVFI3b8HSZddfMDhia3Ck3SvbfQjVdUEFwNmJtCsqqaiBcZRLrFz80gVFy5wjJ9BrOoPweZ0hduwJGPupCckY5l7Ez2AslWcBYM36zbVLl61cdfU5A9Ou6BaxjiLxDKxbYuoAEAUAUZIlLUwJImk919BTdEQj38C616elKEFMXBmM4wFip/H+5fGnFg/rmx8d0if/8K0IaQNTFmxzNQQi97ei6XwYR7kAACa+8eI658CxLKu4jtCEpJPsEWdFALwPgM6JIxnH7/NsB1AMIHbGxaP/+O/CccM7az07ZdkXGLGVLHIsrE0QVQAQJUmkBJEcjezRExpY2fma3XEcDiWICTJHKr8AwAEQAKCq+lDkw4mTZ918yVA69oLYauHavYzAsacBSPSQzq0AqmFW6q3YvTNQXrp5q3PY6bRJOROwHLJGnh1hBel1u0MhJImmwOibeQDYs3dfcPo33y687oJBNCjSTkkCzyMJCaIgyiIVqSGtJRT2AJ9VEIUxOJ+SKEFsBb/PcwDGMq3YLOJTz76+kdPDh84c3cO+wEi7FwhFsXDtHj0S1W5OpF1RSYUKYBaAguZrUyd/stw1+lxaZpoBXENPBhhmM4AtdsdCSLL4fZ5KALMR1zf/7Z/Prujb1RUZ6S60LzBiG0Fgk5MgSpKg0wwiaaWsY8eHwbDvwHw9pSJKEFtvLoyNz07A2Lf11P9envaHCwZFqbQ2sdPMpdtlVdXuhDGSnoiVAHSY7wtzp0zeFdYQkHsOtTpE0qYY5J12VQMnO/9idySEtIE5ACIwjiRAQ2OT+txLb31912+HR+QMOa6GtAzLMmBZhgNgVSYXSxB5QeRpiSlpDYYTkD1ivMYK4lt2x3IklCC2kt/nCQCYiLiqaVNmzN1btq1862Vn9k/ZEQGS+cr31mJ/TZMI4NxE2hWVVNQC8MB8Teu6jsXzvl3mHEXFatKZw30cOMmxC8A8u2MhJNn8Pk8dgK8Qtxfx7Q8+85Vv37712vMGUd/cjigSD1XVQjAGPq0gA4gyDANOlHktREtMSeKcg8dB1/W1MLb2pCxKEI/OSgA+AB2aLzzy+FOzzxvXS+vekYp7EPtMWejLamgKP9iKpvNhjrwDwMQ3Xlrv6DeSYR3Z1gVH2lT+6Vc3sLLzUVj3kERIqlsIoAZArDrNPQ/+beapI7tG3b3y7IuKtCmHxCOq6lZO8ykAVIfLxUPXAI0K5JLE5Z54cT0nO5+yO45fQgniUTCPvZgIwAXz33LTlq31n30+be4DV4+McCxVrCH2WLxuL3iOPQFAzwSbbgNwAMZrGpX79gbLNm8odQ0/g5KLNKT0ORZ8Vn4V6GgL0o74fZ4QjIOnC2EeSbVj197AW+9NnH7vFcdGeI4efdoDReKhaXqThbeUAah5BYWiGg7RbDRJmNilH/jcTiEAM+2O5ZfQu+RR8vs8PgBLEbcp/rF/PrMqEqiruGz8AM2+yEh7FgqrmLd6NxOOqLck0q6opEKDUeQhdmbL159+tNw16tyo+ZxF0kjeaVc1sJLjMQD0XkTam00AFiOuovMzL769uabqwO7Lz6K+uT1QJB6arjdaca/xg7s2V67XcvMLJDUSpEFTkrDcEy9pYjj+v0jh4jTNKEG0xlfm7xJg7N2664HHvrzo5N7Rft1zbAyLtGczl26XNF2/DWbJ9wQ0F6vhAGD+zCl7A+FIg9LnGKtDJEkkdXdDLOzRBOBTu2MhpK2ZR1JNhnHupwMw+ub7Hv77lAtP6q327kLL5jOdLPHQdd2qCqYSzIG2rJw8UQsFaZCBJIRz5cHRfwzDcPybdsfSEpQgWsDv81QB+ARxI5Wbtmytf+eDSdMfvHpkROTpn5m0vV3+elQcaOQBXJhIu6KSinoYB04XAsZD1cLv5hQ7RtKRF+kk77SrGhhBehwAbZQh7ZLf56kF8AGATjCXQGzasrV+0udT5txz+fAI7QLJbEZFecaqBFGEuY87KydXzKQKpgcaw3h4znbcPLUMt0wtw5SSgwCAj9ftx+8/L8Ud07fhjunb4Nnz8/+UX285iFumluHWaWV4atFuhFUjd3568W7cNq0M76/xx7520oZKFO+qS/5fKgVljzkvAk39GMAhu2NpCcpcrLMQwAbELTX9z3NvbKrcv2/7NVQ5jdhkysJtrS1WsxBxxWo+efOljY4+xzCcK9e64EjSiJ16Q+42MMowzPt2x0KIzVYCWIO4qqaPP/Hcal0NHLjolL60TDCDKRIPBqi16HZi8weu7GxJCwUy5rXDMQxuGtMZb148AM+d3xczSqux85BRofWSIR3wykX98cpF/XFc96yftD3YFMHU0iq8eEE/vP6rAdB0HQu312J7TRASx+K1Xw3A1qoAGsMqqpsiKD0YwLie7W/2nhEV5Iw9P8pKyn/sjqWlKEG0iFmw5n0YI0wKYMy83H7PX6acPqprZFjfgiM1JyQplq6vAMexowH0TbCpD4AfZhXAqsr9odINazY7h4+nZTVpIO+Uy5sYlvs3AKrDTto1c6npxzBmEGXA6JsfeuSfX1551gC1awenrfGR5FFkHizHWDVbI8GcQXRlZYtauClj5p/zHQL6FygAAIfAoUeOhKqmli88UTUdYVWDqukIRXXkO3hwDBBSNWi6jqimg2WAj9ZV4ppjO/7yDTNQ9tjzo9D1WTAKAaYFShAtZC41fQ/GLGKsctoLr7z91f1XjYgYyx0IaTvhqIZvPTvZUFi9PZF2RSUVOoBZAGI14b+c+MGKrFETVDD0tpHKxC79oPQdEWE4/jW7YyEkFZh980TErfBZ5llb/fnXM7595A9jaBtIhnJIPASOrbbodrEZRIcrS0I4mJEvmv0NYfiqg3B3MBLG6aVVuG1aGZ5dugf1P1O4tYNDwG+GdsC1X27F1Z+XwiGyGN01Cz1zZeTIPO6a4cPx3bNRUR+GBj2WiLYnjCAj78RLImbBuLSRkS9wm3kArEDcfsTX3p5YtrVsW8mNvxpCe4FIm5tVvEME9JsQ18G10BoYlbZ4AFg8d+a+hsbGWqXvCKtDJBYqPO+WRobjHwRg1d4bQjLBEgAlAGJTGI/8/b+eqgP7ym++ZBj1zRlIkXhdFLgai24X23LhcLpEPYNmEJsFIiqeWLALt4ztDKfI4QJ3Ad69dCBeuag/8h0C3lq17ydt6kMqlu+ux3u/HoiJlw1CKKphXrkxaXvr2C545aL++M3QDvhwXSWuHdEJkzZU4smFuzBrq1V5e+rLHj1B1XX9OxjvP2mDEkSLxS1nCcI8Sw4AbrvnLzNHuwtCYwZ3si020j7tqWzATn89A+DiRNoVlVQ0wDjCJfZANX/u7GLnqAlhi0MkFnEOHgchv0sFw3Lv2R0LIanE7/OoMArWSDAHy3Rdxw23PvD1qIH5gdNGdrM1PmI9pyKEYd1AmQhzZZisOEQ9FOAsum9KiGo6nliwG2f0zcVJvYzq+3kKD45lwDIMzhuQh61VPy3Ms25fAzq5BOTKPHiWwbie2dhS+cOjJ5ftqsOAfBmBqIZ99WE8clpPLNlZh2A083esMLyI3JN+E+Zk56N2x5IoShCTwKyc9jaMB2sWACoPVIX/9Z8XP7/78uGR/GzZ1vhI+zNloS+roSn8p1Y0XQjj7CcAwCdvvrhJ6TGY5bJoT22qYXgRBRP+2MRKjpuRBmcsEdLW/D7PPhhLTbvDfNj3Vx4MPfjIPyfecumwSPeOriO2J+nFKfNRAA0W3U6C+ZpxOBwyIoGMmUHUdR3PF+9Fj1wJvx7SIXa9uun7wuXFu+rQK/enz66FTgGlBwIIRjXouo51+xrRIyc22YqopmNKSRV+O6wQ4agGxvxXa96bmOmyRp6tAVgEYKPdsSSKEsTk2QBgPoDYsOQnk6ftnL9gydK//GF0hOcy5r2FpIFlG/eBZZlhAAYm2HQHgD0AsgGgtqY6snntqg2uEVSsJtVkH3eRyvLiIgAL7I6FkBS2AMAyGEkiAGDOd4v2T5r89exH/jAmIgkZNTHUrjkVQUMSZhAdiqJo4cyp/7W5sglF5Yewfl/DD460eGeNH7dNK8Nt08qw3t+IW8YYhYCrmiL4a9EOAMCgQgdO7pWNu2Zsw23Tt0GHjvMGxkoXYHppFc7qlwuZZ9EnT0YoquO2aWXoX6DAJWb2zxrDCcg75fIgJzv/YncsrcHoeuZn8Hbp3O84J4AnzE9rAYDjOGb21I9+v7OK6fnG15uoag1pMzdcNDR83rjer8sif08i7cYP7noSgD8C2AUAJ5x+Vse/Pf3CjXtfvlmATnliKuBcuehx2ysBVpSHASi3Ox5CUpnZNz8Oo6ppNQAwDIOpk9+5rD7qGvj8Z+upb84AT91xcu3QvgVXA/jmaO81fnDXswFcDWDna5OmXJ672zO4YcP8o46RZK6cEy9R88b9uoiVnRPsjqU1aAYxifw+TyOANwDkwyz0oaqqfu2N904+fnCHwBmju1N2TtrMrOIdIgPmepil3hOwFsZh6zwALF/wXWVd7aEax4DRVodIWin/zGuDAF4HJYeE/CKzb34FgBNm8RFjP+KDU4f1yWk8c0wP6pszgEPmAetmEJ0wl+5LkizroZ/uxyOkGatkIe/kyyKs7LzL7lhaixLEJPP7PKUAvgDQo/naPn9l6J4/Pf7RTRcPjfbtlmNfcKRd2VfVCN/eQwDw60TaFZVUNMFYQx8rVlM055tix8hzqVhNChA794Vz0AkhVpT/bncshKQLv8+zE8CHMLaBMABwsKo6fN/D/5h446+GRHt2/umh4CS9KBLPwNoEMQoAoiRJWpgSRHJ4eadeGQL0jwBstTuW1qIEsW18A+PIgNieh3kLiw+8/vaHUx67fmwk1yUdviUhFpra+mI1ixFXrGbSWy9vlrv2Z/icQuuCI63SwTjW4k8A6uyOhZA0swjG8Rc/6Js/nPj5N49eNybiUoTDtyQpTzYOuLSqSI0D5gyiKEkiJYjkcIT8Lsg69owoKyppV7k0HiWIbcAsr/0OjL0OsfKPz7z49pblyz0rHr1+TITn6L+CJN+KzX6AYdwAhiTYdJf5KxcAGupqoxtXe9Y5R5xFmxBt5Bw8DmJB130My71rdyyEpJu4Y6kOIK5v/ufTL63btHHjmseob05rksDxsG4GUYGZIAqiTAkiOaz8s29oYhj2SRjvK2mL3vnaiN/naQDwEow3GaX5+q33PDIv2FC9467LhtNBvSTpVE3HrOLtfCAUTWhdfFFJhQ5jJjy2JnryB295skacpYHN7EpkqYqVXehw3i0BVnJcBzrWgpBW8fs8TTD2IzoQtz/7+lsfnBNurN5+31XHRhkqOp6WBIEVYF2CGJtBFCRJ0EOZU8WUWEfuMQRKzyFNDC88Z3csR4sSxDbk93l2A3gTQBcAHGAUrfnd9Xd+PrC7o/bXp/ej2RiSdLOW7RBYlrkGcQMVLbQBQAjmUtNVSxcerKmqOugcONbqEEkL5E+4Mchw3IcAltodCyHpzOyb3wPQFXF98xXX3v5593z+4LXnDaIBmDRjHvDOALBqqi+WIPKiJGgRmkEkP8KwKDj3pkZWlO+Fda8721CC2Mb8Po8HwNcAesLcGF9VfShy/S33f3jpaX3Cxw/tbGt8JPMdqAnAu7NGB3B5Iu2KSioCMM4QixWr+fab6Usdo6hYTVtT+o+Ca+DYWlZUHrA7FkIyxFIAswD0gtk319U3RK++7o4PTz22U+N5J/aiyqZpRJZ4RDUtBMCq/zcFQJRhGHCixGk0g0h+JGvk2ZqQ02ErgEl2x2IFShDtMQ3ACsRtjN+42Vv30KP/+uieK4ZHhvfvYF9kpF2YusjnaghEWlOsZgnM4y4A4LN3Xi0RO/YGn0cDG22FkRwovPDOACvKvwPQaHc8hGQCcz/iZADLYQzgAgB27NobuPH2P73/uwkDQ2OHdLItPpIYh8RDVXUrszgZgOpwuXhoGqDRriDyPc6Vi4Lx14RYyXENgIxYDUgJog3MojXvAdiDuNmYad98V/H4E89MfPia0RF3rzzb4iOZb1XJfmia3gfAsQk23QvjrL08AGhqbFDXeZatcY04m5ZgtZH8s64Ps7z4OYAiu2MhJJOYffO7AHwwtoIAADyr19c8/NiTH9935YjIgB65tsVHWk6ReGia3mThLWUAal5BoaiGQ9TfkR/IP+fGIMC8DGCz3bFYhRJEm/h9ngCMojUqzMqQAPDJ5Gk7//PsK5/97YaxETojkSSLpun4Zul2MRCM3p1IO7NYzWwA2c3XPn3v9ZWuY8/UwfGHb0gs4RgwBllDTqxhJSVtD98lJJX5fZ4gjL65FkBsOc+UGXP3vvDK21/+9Yax0U75DtviIy2jSDw0XbdkhcX4wV05GHvvtdz8AkkNBzNihohYQ+k7As5+Iw6xovy43bFYiRJEG/l9noMAnoNxAGvsVN63P/jM98ob73/1j5uOj/boRIf1kuSYvXwHz3HMVQBcCTbdACAIQASADSuXV1dV+vc73SdYHSKJwzqy0eHCO4OsqFwGOvOQkKTx+zy1AJ6FsRcxNlL78hsfeqdOn/Xt/910fCTHJdoWH/llisxD13WrKphKMJcNZufmi1o4SPtRCQCA4UUUXnhHgBWV65ABhWniUYJoM7/PUw7gGRiziM7m6y+8+l7phx9/Nv2fNx8f6VxAo5XEelW1QWwur1IBXJlIu6KSihCM5Y2x5dFzZkwtdoyaQMVqkqjggttDLC+8DmCx3bEQkun8Po8fRpKYDaOCJQDgz3972rNq9erl/75tXCTXJdkWHzkyReIB6wbSRJjFbrJyciU6A5E0yznl8igrynMBzLE7FqtRgpgC/D5PKYDnARQi7uiBJ//36oavp86c++StJ0YKcuTDtiektaYu8rkaW1esphhGOXgGACa/+1qpUNBdFwq6WRofMbiGn6E7eg7dw4ryn+2OhZD2wu/z+GCckdgJ5ooJALj5zofnrV69avm/bz8xkptFSWIqkkUeDMPUWnS72H+yMytL1EIBmkEkELv0Q+7Y84Os5LjV7liSgRLEFOH3eTbC2PfQCXFvRo/93/9WfTdvwcInbz2RRiuJ5dZ6KxGJat0BjE6kXVFJRQWArTCL1YSCQW3N8iWrXCPPoc37FhM6dEfBOX8McrLjUhjnULaa2+3+n9vt3u52u3W32z3MohAJyVh+n2cNgA9hVB3nmq/fevdf5nk8nuKnbx8Xyc+mAdxUo8g8OJY5ZNHtYjOIrqxsUQs3MRbdl6QphhfR8dIHAgwv3ATAb3c8yUAJYgrx+zyrAbwJ47De2GjlfQ//39KVq1Ytf+KWEyIuRbAtPpJ5NB2YsaRcagpG7mlF8zmI27846e3XVrmOOV1neNqbYxVGcqDj5Y+EWEG8A8BGC245BcCpAHZacC9C2ot5AKbCOCMxVo3r9nsfXVBcXLzkqdtPpCQxxTgkHjzH1lh0u9jovMOVJenhACWI7VzumddGeEfWHIZhP7U7lmShBDHF+H2eYgAfwBitjGWDt979l3le75a1/7zlhEi2kx7AiXXmrtjJ8Rz7W8RVJm2hTTA2ZUsAsGX96kP7K3ZXOAefaHWI7RSDgovujvBK1icMy71nxR29Xu8Sr9e724p7EdJemGckfgXgaxhnJMaSxDsf+NuiRYuXLHr6jnGRDrmUJKYKReJ1UeCsShBjD10Op0tEqIk70heTzKb0ORbZw0+vYyXHDXbHkkyUIKam+QA+BdAD5pIWXdfxh5vum7XNu3nVf+88KdIxTzniDQhpqZr6ENaXHdB0Xf9dIu2KSirC+FGxmtnTvi52jDyXitVYIPvESzW5+6AyTs7M/Q2EpBMzSZwC4Av8KEm8509/XzJv/oIFT90+LlJIfXNKcClCGIBVVUxFmPvtFYdT0sNBenZup1jZhcKL7wlyknIFAKsGIFISvchTkNkRzYIxWtkL5v+Truu47pYH5n5XVFT037tOjvTukuiEDyE/b+qicmdTMPogzE4wAUthvD4ZAPjig7fKuNyOmlDY0+oQ2xWl7wjkjrukQXRmnQOAEm5CUoDZN08H8Dl+lCTe/+d/Fn/73bz5T98+jgZwU4BDEaKwLkGU0JwgKoqECC0xba/yz78tzAriezAGxzMaJYgpKm60chaA3ojbHP/QY/9e8c77H0/5160nRof373CYOxDSchu2HUAorHYCcHwi7YpKKvYDKAGQDwCRcEhbuXTRStfIc6JJCLNd4HM6osPF94Z52XkhgL12x0MI+Z7ZN88A8BmMJDG2FeTBR/61bNacb4uevuOkSE86w9hWTplXATRYdLvYDKJDURQtHLTotiSduI45TXf2Hb6PFZUH7I6lLVCCmMLMjugzGCOWvRDXET3z4ttb/u/fz07887Wjwicf29WuEEmG0HVg2mKf0hiM3NuK5nMRV6zmk7deWeUadioYgaruJorhRXS47M9hhhf/DDrvkJCUZPbN3wCYBGMrSKxvfuixf6+Y9NkXM/99+7joiIGFdoXY7jlkQYd1M4ixKWFFkWUtROcgtjdix14omHBTkJMcF8KovZDxKEFMcX6fR4Ox5+EjGB1RbBf8x59O2XHHfY+9e/PFQwK/OqWPZleMJDN869nFChx7McyjKxKwGcZIrQwAZVs21u3btX2Pa8jJVoeY8fLOuyXKOXNn8aL0fDLu73a7X3S73XtgFMH6zu12b07G9yEk05lJ4mwAE/GjJPFf/31l/d//9b+P//S7kaEJx/ekM/Ns4JB5wLoE0QEgCgCSJMtauF3kB8TESg50vOzPIVaUboJRnK9doAQxDfh9Ht3v83yL789JjM3WzC1avP9319/5xq9O6lF/3QWDVYZWxpNWqmsMY1Xpfk3T9GsTaVdUUhGBMYsYGy6fOeXLYseoCbR3LgGu0efqjn6j9kiunKthnrllNa/Xe7fX6+3u9Xp5r9fb2ev1Dk3G9yGkPTCTxLn4fgA3tmzik8nTdl538/1vXjG+b8MNFw5RWeqb25Qi8QysSxCdAFQAkGRZ0mmJabuSf9HdEVZ2fsww7ES7Y2lLlCCmEb/PsxLAfwBkIW6WZ836zbUXX37DG6P6Zx28/6qRUZ6jnoi0zvRF5Y5gOPoAEi9WsxxxxWqmfPzuNsaZFxU797E6xIzkGDAG+adf3Sg6s8cDaLI7HkJIy8QN4L4BoDOM/hkAULxidfUFv/nDa8f0Vvb/5Q9jIpKVDb2gAAAgAElEQVRIpyO0FVnkWVg7g6gCgCBKEs0gth/ZJ1ysKT0GbeNl5x12x9LWKEFMM36fpwTAv2A8iMeOF9ixa2/g/EuvfafAEdn19xuPj2Q5hMPeg5DD2VRehcZAJA9AQutDi0oqDsA4yL0DAESjEX3F4gUe54gJVKzmF8g9hqDgortDDC+dAaDc7ngIIYnz+zxLATwFI5koaL6+a3dF4Jxf/e5dhKq3Pn3HuEh+Np2V2BYkkeORnARRoASxfZB7DkXuyb8NCI6sCQBCdsfT1ihBTEN+n2cXgCcA1AHo0ny95lBt5MJf/2Hi/j3b1rxw/2mRgT0T3UpGCDB1UbmjMRC5rxVNv4XRkQIAJr718mrX0JMYRqSS74cjduyFDr99KBJR9Ys5nl9ldzyEkNbz+zxeAP8Ho4hFrHpcU1NAvfTKG79Yt3rl0mfvoSOq2oLAswKsq2L6fYIoSYIeoiWmmY7L7oDCXz8Q5iXHpQB22x2PHShBTFN+n6cSwJMwXrixQ+dC4bB27U33zX7rnQ+++vuNY8MXntyHNsiThBSt3MUKPHs+zNnABJTAGLRQAGD71tKGPeVlO1xDqVjNz+FzO6Hwir9Ga+vqb3S4XHPsjocQcvT8Ps8+GAO45TCqjzOAcY7xHff/deF7H34y9V+3nhg5YVhnO8PMaBzLgGUYBtZVm1RgFqnhaQYx4zGigo5XPBZmeOlxGAPf7RIliGnM7/PUAXgGwDoAfRB3VuKLr71f+rvr7379ghO6VD98zaiIIvGHuw0hP9AQiGDFJr+qatp1ibQrKqmI4kfFamZ8NbnYOfo8KlbzI5wrF4VXPR6tPnTor4Wdu35odzyEEOuYffOzAJbC6JtjHfD/Xnhr80OPPvHBbZcOafrjRUNUqhlgPUXiEdW0EKwr9qUAUBmGASdKHJ2DmMEYFgWXPhBllKzJvCQ/bXc4dqIEMc35fZ4AgFcBzIIxWhlb4udZvb7mzPOueF0PHNjywn2n0LIW0mLTlvgcobB6H1pXrAYw31umffrhdl10RqSuAyyNL52xkgOFV/wtWtcYeLVLzz5P2R0PIcR6fp8nDOBdAJNhrPKJrbWfMmPu3nMvuebl/p3ZXU/fcVKkMI+W4VtJkXmoqm5lFicDUJ1Z2Tw0DdBoa32myjvnRpXv0HOtnJV7PZJUTTxdUIKYAfw+TxTAZwBeAJCDuBmcuvqG6GW/v3XK5198NePJ206MjB/bo12/4EnLlO6oQV1jOBvAGYm0KyqpqIIxo90BADRV1YsXzV/uHHkO9agAGF5EwWV/iTaq+LJTj9732h0PISR5/D6P5vd5ZgB4GUa/nNv8Z7t2VwQm/Or3H61dtXzRc/eeEh07pJNtcWYaReShaXqjlbcEoObmF4hqOKRaeF+SQrKOu1CXBx7nd+QWnAVzSXF7RglihjBLba8G8DiAahgjlrH/3yf/9+qGm+986K0rx/epu+eKY6OSQOW2yZFNXehztrJYTRHiRssnvvnSWuegExhWchyhSTvAsMi/5H41LGYvLuzWK2lnHRJCUovf5/HAqD6uA+jWfF1VVf2eh/6x5LG/P/3hnb8Z1nTLJUNV43QGcjQUiYem65YcFzR+cFcexhJhLTe/QFLDQc2K+5LU4hh4HHLG/baRkxzjYNRSaPfonSjD+H0eP4yOaCGA3jCWRgAA5i9afuCsC656NVdo2vbMPSdHuhW6bIqSpIN5q3czPMeeBSDRoe1SAIdgLnfeXb6tcWdZqc95zGntNyFiOeRfdI+q/X979x3eZLm/Afx+s9MknbS0KUNaoJQlsyBbijJUUByAE9yox/nTg4uDouccRI8i4oKDooKKR3GgIBgEBAphlFVDgEDpSNM90pFmvb8/3lDqAEXSfX+u671aSvP2KcY8uZ/xfcLjD0fFdZgAgG8yiNoQh81sgzSAmwFpX2LdWVSfrfku+/LJNy02hnltrz4y0tM51nC229CfoNUoIIpisI64UCHweh0aHqnyu2vabj/WSqk7JCHqyvvdUKjGqtTqrKZuT3PBgNgKOWxmF4APALwNaalf3ZlMRcUl7quun/Xpxg0bNrz8t+GeKaMS/DLukaffUe3yYvtBu+j1+u84n8eZLHYfgPWoVwX16/99kqYbMMET7Da2BIJChahrn/B5Ijoe9orCUAAs2kPUBgWK1ywG8AmkmcSw03+Xk5vnumLqbR+v/Wbtd/+6b5iHFcj/ukBRvmDNAqkRWO1hCAtX+2oZEFsTVWwXRF/3pMfl9l6rUqt3N3V7mhMGxFYqsOR0B4B5AKoBdES9ctvPPP/ynpvuePCtMX0jHC89MNzTIYazifRba7ed0Hp8/odw/q8V5sBHGQB899nKTJ9MVavu0COo7WvuBJUW7aY9462Q6fZVu2oHR8fGsfwdURvmsJl9Dpt5HaSVPgKADqjXNz//79f333rnQ29PGNy+6MV7hnri2umasrktklatgCAI5UG6ner0J/rQMJXodnFIvZVQtuuA6GnPeMsqnLMMYeFrm7o9zQ0DYivnsJlzADwHYDekZS3q03+3a/f+0tHjr1+Wtn3LDwsfGO65ZnQiZxPpF45ll6G43KUFcNn5PM5ksZcC2INAwSRRFLF9sylN1//yNjOLKNPqEX3jPK+9vMb82YfvDevctXub+d2J6NwcNvMxAM8C2Aepb67bDpJmTi8Zddm1bx8+YN78nwdHeKaldvPzOIw/T6tWQC4TSoN0OxUCM4g6vV7ldwdlayM1MUV4e8TM+Ie3oKDo0Zg448qmbk9zxIDYBjhs5moA70AquR2NenvKfD6fOGfuAvP0mQ+8OaJ3mP0/D410J8SHne1W1AZ9teW4vrLG8+hfeOgm1HvTs/Kd1/frug+WybStf7Zarg9HzE0veE/k5G1e8PT/jXn0uZfafEU0Ivolh83sBPAWgHchbQWpq0Be63b7H50zf8cNt8xe0j9Bk7X4sdGenl0im6qpLYpWrYBSIQtWQKwbVA/RG9Siu4ZJvYWTGyIRc+M8rz3PMb9jQtfFTd2e5ooBsY0ILDndDOAZANn41Wzinn0Hy0Zfft1/N3y/bv38u4e477iqp0+jYqVTArak5wpKuWw0AON5PvQogGIAOgCwZ5+qOXEk46i+z5hWvYdDERaDmJtf9B0+Yv3ykZnTJixfu5kzh0T0uwJ98zYAcwEUQiouV7escd+BjPJxV85YsXLVx2uevHWA62/X9/Xqtcqz3I0AQKtW+JUKeVmQblf33yJEp1ehtppvjFowuS4MMTPmeQuKS17vktTz+aZuT3PGgNjGBKqcLgCwAlIRkdjTfyeKIp7716L0iVffsijO4Dry1hOXeng2E9XUerElPUf0eH13n8/jTBa7H8A61CuS9OWnK1t1sRpluw6IueUF3770fe8/ee+t0wIFe4iIzslhM+dB2pf4MYAY/KpvfvWN5ZZLJ057Te0rPvTW3y/1juoff7ZbtXl6rdIDIFhVTNUI7BHVhujUoruG75tbKLk+AtE3zfcWlVe+16lrj8eauj3NHZ/obVBgk/wmSLOJmZBmE+vOrbOdzKqecsMd/1v4n8Uf33t1svOZWYNYxKaN+3b7SY3PJz4A4HxHT/dA2r8hB4CNX32W7fajRtO5d7Cb2ORUsQmIuXGeb+f2ba/N/duddwUCMhHRn+KwmT0Om/l7AE9BWoGRgMAKDADIcxTUTrv1vq+f/se/Vtw0rkvp/LuHeGKj2vj5sr9Dp1V6EbyAeGYGMUSrYZGalkke2g4xN8/3OopKlnXsmnReg91tFQNiG+awmfMBvARgKYBQSGW36178Vqz64uSI1Gtezzx6YOtLDwx3/+36vt7IUM1Z7kat2YnccuSXVKsATDyfx5ks9nIAu1CvWM1Pmza2umI1IT2GInr6s76fNv84b/5jsx83WeytehktETUch81cAOBVAK9D2sfdAfXer33+1fqcYalXv2E9vHfrqw+P8tw5uZcvVKc6y93aHp1W6UNwA6IMALRarVb0sBB1S6MIb4/2N8/3ncjMejchuc/spm5PS8GA2MY5bGZ/YP/Dk5COJrgI9c5mqnBWeh96fN62SydOe9VflbtnyeNjvLdN6uHTcQ9Em/PlVpuhstr9V5ZlbEa9/a4r31l8ICSxvyALCQ1a25qOgLDRM/z6sbNcn698/45xV019geGQiC5UYG/iHkh98xYAnQDUValxuWr9Dz3x3LYrpt72epi89MA7c8Z6Z1ze3R84A7BNC1ErRAQvINatrtJqNGp/bU2QbkuNQRndETE3z/cdzshY3GvgkPubuj0tCQMiAQAcNnMZgGWQ9id6AXRGvTf1Obl5rpl3P/r9NdPvXBynr8lY+uRY79QxiX6Vgk+htuKn/blQyGVDIb1ROR/HIRVf0ANAQV6u61jGwSP6i8e26CAlqEPQ7vo53pq43iWvPv/0xBvvfnBFU7eJiFoXh81c6bCZPwTwAqTQcxHqLXu0HjtROf22+7+5ceYDb3aN9lmXPjXWO3lUF1HZhvtmrUYBAJVBup0O0nsiqNUajd/NgNhSqI3dEDNjnm/3rp3/HDTi0keauj0tTdt9BaHfCIxY/gzpbKZPAUQA6AigbkjyUIa14tob715zx+z/e2dAF/WJd58c6xmX0gkyHqDY6tW6fdi0N1twe3z3nM/jAnvxvkO90e8vVn2wU99/vLfeiuYWRRlpROzMBd4j9pLjj91x09hnX31nc1O3iYhaL4fNfBzAPEh9czSkZad1e8LNew+UTr7+9tUPPPL00ku66zKXPjnWM25wxzbZN2vVCgHBm0EMAeADALVGoxYZEFsEbdcBaHf9U76tP/7w95GXXzG3qdvTEjEg0m84bGaXw2ZeD+AJSFUo4yDtT6x7vmzdbi4aP+WmlXOfX/DBFSnReW8+PtoztHdcE7WYGsu320+q/aI4G8D5rjHeC8CPwBuazeu+yq1xeyq1XfoGu4kNTps4ADG3vOhb+81XPzw5e2bqp5v3HmrqNhFR6xcoYrMOwN8hLd2Ph9Q/1/XNGzdtKxh35YwP5r2w8MMrh7bPe/Px0Z5hfdpW36yRljYFPSAqVWouMW0BDAMniOET73N/u2b1nZdNvu6Vpm5PS8WASGflsJkrHDbz/yB1RjsgzSbGot60z+dfrc8Zedm1776zdPnqmRMTShc/NsqdOrgj2vLyltYsy+FEbmGlAsCV5/M4k8XuhPQcigGkYjVbfvh+R0j/8S2qWE3oJVf7wybe535z4QuL335p/nUmi93e1G0iorbFYTOXOGzmjyBVO90LqW9uj3p982drvsseMW7qu2+/+9/Vt4xPKFn86Cj3pQM7QiFv/X2zWiVXoAECokqtVvpZpKb5EmQIHzfLp+h/RdUH77wxZeotd77f1E1qyQRRbNHbgKgRxSamdAAwFcAAAFWQ9pXVEQQBt99yfeJN068bFW9sb/xuR6bsu7RTsjJnbVM0lxrIpQM74O6r+2zXh6hGnM/jUpONiZCOVjkFAJHtYlSrNu543P7OgwpfZWlDNDVoBKUakVfc73UZ4ir/8/zTT+zZvmU5zzgkouYgNjGlE4BrAfSDFIyK6v+9XC4X7p41vev0668Z1b59dOzabSdl69JOySqq3E3R3Ab35UtX+eRymQHABU/3pSYbn4Q0sFm+dlfGE4UrntR6Kwr/6GHUyASlBlFTHvGWy0JK3n1t4aT5S97b29RtaukYEOm8xCamCAASAdwAIAlAKYCyX3/fqOEp7e6/d+bwwf379N552CF+9dNJ5Ync8kZuLTUElUKGj56f6NKqFb0AnPizj0tNNgoA/gmpwIITAF5bsfpqY3VWn/LtnzfbYW11XCIiJz/stR49lvXyvDm3fLQhbUdTt4mIqL5A39wVUt/cDVK//Ju++bKxI2Jm33XbiH59eiRvO2jHV1tPKrIcwZpsa3oKuYDPF1wlygRBDukM3guSmmx8HlIl06r16cefzl0yW+F3Bav+DQWDXB+Bdjc87T2RlXt80Ytzr1j29aY//b6Ezo4Bkf6SQGfUG8B0SPsgKgEU41cvyJ06GrWPP3T3wHFjRw+zF1XJv9yaqTJn5MHPp12LdtfVvd3jh1y0WK2S/9/5PC412TgKwCwEZhFHXDYx9qn5L92eu+ReJcRmdq68IEPo8Kl+/cBJvlXL3t6w8p1F95ks9qymbhYR0dnU65unQSpk44TUN/9C14TOusceunvw2NHDh2bmVQhrtpxU7bMWoKW/JdRrlVgxb3yNSiEPCcb9UpONCwH4BEFwbTicNTdzwQwBfi4eaS7U8d0Rdc3/+dJ+2rL1P/PmXPvNnqNBW46UlJTUHcAKAFGQ/h+61Wq1HgvW/Zs7BkS6ILGJKXIAyQAmBT56AOQjsGb/NI1GLfvbvbclX3v1laN0On3El1tPKky7s4Qql7fxG00XpF24BjeMS/KN7h9/KkSjTDyfx6YmG3UAXoP0HPECwGrTzvvdP33Yrub4vgZo7V+jjIxD5OSHPIVOV+mCZx5fejTj4Esmi72iqdtFRPRnBPrmnpD2i3fHWfpmvS5E/vD9t/e+evKkUTK5Sv/1tpOqn/bb0VKXn0ZHaLHk8bGlWrUi8o+/+4+lJhsXA6jQh4aJa7YffCpzwfS2Vxa2mTIMnCgaRtzgW71i2X9XvPHyIyaLPagVhJKSkjYBWG61Wj9KSkq6GcDtVqt1bDB/RnPGgEhBE9ijOBbAKEgFkArxO3sArp0yocPtt80Y0TMpseuBY4W+Lfvtqt0Z+aj1cFSuuVLIBaT0isVVIxIqu3eKkPn84iqtWrEIwOHzvVdqsvFWACMA2AFg9t/n9b982IAJRZ/9S3XuRzYO/YDLxfDRN/nWrFqRvnzRS695vZ7PTBZ7iyqmQ0QE1M0odgSQCmA4pEI2BQB+URxAEATceMPkzjdOm3pJz6TErhkninw/7rOrdh12tKi+uVOsAS89MDJHp1V2DMb9UpONywDYOyZ01S797NuHs1+dqfjDB1GDEpQaRE6a7XWHd6xZ/O/nntluWr8k2DUBkpKSYgAcBRBltVp9SUlJckiziN2sVmub2ITKgEhBF5uYEgbgEgBXQDocvRy/sxciLjZGfdfM6cljx4wc2KlDXNwei8O/Od2uTLcWwOvj87KpyWQCel4UiUv6xPrGDOgg5uQ6yrOzs94cP27Uv3ABm/9Tk41dAMxFYJlpWESk8lPTrsftSx9R+py/WQnVaOT6cERe8YCnRh1e9a+nHvv24J6dCwAcNlnsfDISUYsXm5gSASkkToRUnbMUwG9WRsRER6numjm9x7jUMYM6d4gzmjPy/Jv25SoPHCuCv5nvD0nqHIF/3DHUatCpelzovVKTjQoAywBk9hk4JOLfbyy9177knmYxkNlWKaPiEXXtEx7r0WM5C+f+fXa+PWdDQ/TRSUlJAwF8YLVae9X72s8AbrZarc1nuVMD4kgIBZ3DZi4HsD42MWUTgL4ArgLQGdKIZQGk8/CQ5yioff7fr+9//t+v7++a0Fl3+603JN+UOnzQozP6R+04ZMfW9DzFoeOF3K/YiFQKGfolxWBY7/belF6xKCt3Vuzdt//QLXe8ZNm1Z78BgNNhM1/oMo5MADkAQgFUlJeWeDLS9xzq2G9cv/KfPm2SYjW6HkMRMeEe7+bvvz2y6IVnl7pqqj8wWeysqkRErYbDZi4FsDY2MWUjgP4AJkPqm12QKp/6AKCgsNj94sIlB19cuORg965ddHfNnN77jknDBoWH9Q/fmp4r/LgvV34s+zdjvs2CVq2ACDFYVXdUCLxfMYSFq/zuGr4baUIhSUMRMfEe7xcrV2x7/42X7/v+4KkjTd2m1owziNTg6lU+vRzAQEjLT52QRi9/8wS8uHdy6Mybr+s9fNjQAWGh+rCt+3OFn/bnya2nShgWG4Beq8Tgnu0xrE9798XdYuTZ9oKCXbt2H1j12dfW9AMZckizwC4AmwD85LCZHRf6M1OTjcMA3AkgCwCGjhkXM3fBojtz37i7UYvVyPXhCE+d5RViu9W+PG/Oxu2m7xcCSOOsIRG1drGJKTJI+xMvxZm+uRJn6ZuHDRkYedtN1158ydDB/f2iTJ122CFPP1ooz7AVw+1tHkXGLukThweuv/jHUJ36gveKpSYbIwC8DCB7/DXTOs2ePXtG4QdPai68lXQ+BJUGEeNu98o79/G89sLc9zav+/pZk8Ve0pA/k0tMOYNIjcBhM4sAjgM4HpuYYgDQC8BoSMdkANIS1LrZmgOHLRWPzJm/A8COYUMGRt4yY2rfh28YcHGYQW84cLzQt89apEq3FqCgNKj7kduUduEaDOkVi+F9Ymu7dopQHD2edWrb9h8PPvzgF0czs3KVAMIBhAH4GcAPADIcNnMwqxbsh1SkRgHAu3PzDwUV5WWlId0GxVQfNQfxx5yFTIHQwVf4Q4dN9W8zfW9dcs99n5aVFL1tstjbxAs/EZHDZvYDOALgSGxiig5S33wpzvTNZai3BHXHrr0lO3bt/VEQhB+vnDA2btL4S7vfNr53cnzs4HbWzGLvHqlvFk414bEZWrUCgiAEa/WHCoGgrA8NU4nuGhaoaWTq+CRETXnYk3H4UM6r0ybPz8vJ+qgxagJYrdaCpKSk/QBmAPgo8DG9rYRDgAGRGpnDZnYC2AlgZ2A/RF9IYfGiwLeUInBGHlDXIW0GsLlnj26GqZPHJwxJGdjj1okju1S7vMI+a6Hs0IlixWFbMcqctaDfEgSgQ4wByRdFIPmiCE+vLpFiqE4tHLYcO/bNV58f+vDjNbbSsnIDpJnCGEizeusBpDts5gZ5MTRZ7NWpycYtkP7b2wHA9P13OyaNGT+p+qi5Qfd4aBP6IfzyOz2O/IKCf8yatvPIwfR3AZh48D0RtVUOm7kKgBmAOTYxJRLAxZCKznWGtMyyGEA1AIiiiG/WmfK+WWfKA7AlLjZGff01k7qMGDYkacrIQd3kcoV6n7VA3GctUu4/WtioFVG1agXkMiFYRx2oT3+iNxjU/loOSjcamQJhI2/w6fqN8y1btHDLmo+WPw1gTyOv7rkXwIqkpKS5kN6b3tqIP7vJcYkpNQuxiSnRkMLiWABGSKN2xQCqfu/75XK5cPnYEe3HjxuV0KtXr26JF8V3KK+s9R+yFcsO2UoUlswS5JdUN94v0IyolXJ06xSO5M6RYq+EcHePzlGKGlet60RmdtbhwxknNm/blf3j1rRij8cbAekAYEAaRd4BwOKwmRulUkxqsrETgOcQKFajDw1TfPbj7iccyx9XessLgv7zFOHtET5ulkcWfVHt0kULd61d/VEagHdNFnt20H8YEVELF9geEgdp+emlkFaVANKKHyfOchD9JSn9IydfcVnioAH9e3ZN6Nghv7jKZ80qkx/PKVcczylHZl4FvL6GWZJ63dhuuHF80itKxfmd0ft7UpONXQHMAZAz++/z+qf27zahdO0bLFLTwJRR8Yia8ojHXlRa9MKch1dnnzi+0GSx5zZ1u9oaziBSsxCYqTIFCtvEQdpAPwpAp8C3uCCN4HgAwOfzies2bnGs27jFAWCHUqkQxo4eFjNuzPCLUvv26nbHVT3i1SqVMju/3HvS7pRnOpyKzLwKnMqrgLO69ZxYoFLIENdOh46xBiR3jvD16hLh7dA+TJmXX1xy/LjtxMZ1WzP/74ct2RarrRLScpkoSKOi7QEcgDSbaw3M7Da2bEizleEAyioryr2H9pr3d+k3bmDZllVBK1YjKFQIHTbVbxg0yf/D2jUH3vz3jYdqqqs+B7DRZLG3zMO+iIgaWGB7iB2APTYx5VtIs4k9AKQEPgekPrkUUh8NAEgzp5ekmdNLAOzWaNSyKyeMNQ4e2Nc4sHu3TleP7B0fHRUWai9weo5ll8mO5VQoj+eUITOvAp4g7GMM0Sj8SoU8WBV06sKgVqdTobZaHqT70u+RyRGacqU/dOg1/tUf/HfvijdeXuT3+9eYLHYuD2sCnEGkZiswehkJqcDNAEhLXlSQznGqhDSKedZlgZ06GrUjhw2O6dOrR0xiQpf4+Pg4Y1xMVITL7RVP5VX4T+Y5laccTllmXgVyCyrhcjfPFYYKuYD2kToYo3UwttMjPjrE2yFa5zNG62Wheo28uNRZlV9QVGQ9evRE2q69Wd9t2GwvL3d6AWggjfhqII30ugDsArAXwDGHzdzkL7qpycYhkJZxnAKAQcNHt5v/2tv35Cy+WwG/94Lvr+txCcLHzfKctB3PXjD3iX1ZtmObAHxmstiLLvjmRERtVKCeQAKAPgAGQapKDUirfspwjr45LMygSB09rP3ggRcbk7p369SpY3yHmHbhoXmFTs8Je4XgKK5R5ZfWoLC0Gvkl1Sgqq4HvT1aomz21b+2k4V3mAHjtgn5BAKnJxv4AHgCQ/fTLb47qF+YdU7blY+5DbADq+O6ImDTbU1BcVrLwH3PWHTm0f6HJYv+5qdvVljEgUosRm5giB9ABQFdIYbEHADmkwFgFaTP9OacHBUFA/749w4am9G/fs0fXmM6dL+pgjGsfGx0VZvD7RZQ5Xd5Sp0ssrXAJxRW18lKnW17qrEVphQtlzlqUOmtRVlkblLOglAoZdBolQnWqX156NSL0Sl98tM4bH60XIsJCFGUVVTWFRSUlDkd+fnZOTuGx45nF+w9Zig8c+rnc4/GKgX8DQ+CSBa5SABmQCs1kA8hz2MzNKgWnJhs1kDryYgT+261av/Vu7PkyrupI2l++rzahHwwjp7k9Sn31Gwue37l53dfpAD4AYGWFUiKi4AkM5sZC6psHAeiJM/1QDaQB3XPu+Qg16BVjRw9r369vcky8MTY8JqZ9dGRkRERkRGhoqD5E66xyefNLqv0FJdWCo8SlLCitForKXKis8aAqcFXWePDw9P5Vowd0eAjAfy/09woMYN4DIOvFN9+7vJtYeEl52poLvS3VI9PoEDbmZq+me4rv/TcX7fr8gzCALgIAAAz4SURBVKWrRL9/lclib7pKRwSAAZFasNjEFAWAeEgFbk4HxtObymWQzl2sClznXLsiCALaR0epExMv0nfuaNQb49rrY2Oi9VFRkYbwiIiIsNDQ0FCDTmfQh4ToQzQql9vj9/tF0ecXRb9fhN/vR+DPkL7mh88vwh/4MwBo1QpBq1bKtGqFTKNWyvyiKLpq3d6qapersqqmpqqqutrpdDqdzoqKkpLSKtvJrJJDGdbivfsPl1VX19QPdgKkWcEQADqc2QdyCsBhSBVjswGUBZYINWupycZpAMYByAWAWQ8+0XvKhNSrClfNO++9HiFdB8Iwcprbqwyp+fi9pXu/+HDZcZ/X+ymAnxqj8hkRUVsXm5iiAtARUj2B7oErGlJfJUDqm52QwuMf9lFqlUrWK7mbIblH1/CEizqFd4iPjYiJad8uIjw8XKvVaFQqRUiYQS+q1Uq1TIBMEISxADZf6O+RmmwcBWAWgFOvvvfJFGOZtV/F3vUXelsK0PUcgYhxs7wH9u62LZz7xI7iwvy3AezmIG7zwIBIrUZgFDMMUiXOGEjLXxIghcjTe9oEnBnRdOFPdE6/plQqhLjYGI1SoRBUKqVMpVTJFEq5TKVUypRKpUyhUAhKpUKmUChkSoVCplQqZABQXuF0F5eU1hYXl9YWFJW4fxX6fo8aUgjUAlBCWrIjBK4iSPv3foYUDHOaw5LRvyI12dgBwHwElpmG6PTy/23Z+0T+iidV3tK8P3WPkO6DYRgxze2Rq6s+eX/Zrs9XvJvv9/s3A/jSZLE3zxOdiYjaiNjElBBI9QXicCY0xuBMaDy9DeL0dT4Deh0BLHHYzOmQtqEEpS9MTTZeDmA6gKy3Pv5qWnhWWo/KQ1uCces2TRndCeHjZnm8IZHVrzz/zI60Hzd8C+ATk8XeKAXy6M9hkRpqNQKzZWWB6yiAbUDd0tQoSJ1RHKQ9jV0gFcARcWZ2UYAUJL0A3L+66sKcx+MVs7LtF1LvWg4p8IUEPp6+5PhlCCyDFAJzAlcxgBIAJQ6b+cI36DUfuQBskEaYS6urKn37zWn7uvW/bHDZpg/OURRAgC5pCAwjb3DXivLKD95ftuOLD5cV+/3+kwA+NFnsJxqn+UREdC4Om7ka0uu8DWf6Zi2kPjkGUh9thLRUNQbSsUt+nAmQAqTgWAupjz59+QLf4w58DOZAqS5wf6jVarXf7fqDb6dzkevDETbqRq+2e4r/69Ur05cvWrDLXVv7XwCHOGvY/DAgUqsX2HdXELgOA9gI1AVHHaSOqP4VCaBd4GMkpOCixpkgebrDOv35nyHUu9yQ9kuWQiq0Ux74vAxSACyGFALbRIVNk8UupiYb1wO4H9K/Az557+3dC956f1DZllWA71dZWJBB12MoDCNucNd4xYrly5amfblyeYkoilkAPofU2TRMDXUiIgoKh81cA+BE4PqF2MQUNaQVQeGB63SAbAdpr70O0iCrGtJsY3kDNDEEpwOiRqMW3TwH8a8QlGqEDpnsD025yr9r66aMRQ+OzCgpKlgD4FuT5YIG26kBMSBSmxUIjhWB65wCeyq0kGYYT8801r9+72uANJrpDnysBeB22MwML791CNLosAqA++DunSVF+XkOXY+hHaoytgGQNrPr+lwqGgZN8lbWuMrefWtJ2tpPPywVRfEUgP8ByGAwJCJq+QJbJk4P7J5VYKBXFQibwVY3g6hUqdWuWmaZ8yLIoO87BmGjb/Rm2o5nzpkx5cAJ688HAbxvstizmrp5dG4MiER/QmA2r03M6DUFk8Vem5psNAGYAGk5LTZ8+3XadZOvnOIpylHpBkz06nsOQ+ZRi+3tF/5xeMv6bypFUTwBacbQwmBIRNT2BAZ6Gyq51c0gqtRqZTWXmP45ggz6nsNhGHG9u6K6tvSFOY/s3rFpQyaATwGkmSz2ZlVNnX4fAyIRNRfbAVyBQMGC1cvfOjJt5l1XRt3wbM3On37c9d5Tl53IPXVSDqlK6xeQgiH3LRARUUPQQtrnCIVKrfJziem5CTLoe49C6PDrPRXV1SVvvPrKvu/XfJoriuLXAEwmi/2cR51Q88KASETNgsliz0tNNh6FVLSgpNbl8t88YdTrlc7yKK/Ho4BU3OAL8CxDIiJqeFoEZhAVKo1C5Azi75MpoO8zGqHDr/OUlVcUvvbSP3f/8M3npaIobgHwtcliL2nqJtL5Y0AkoubkewB/g7QfMbqspMgHaWZxM4BMBkMiImokWgA+QRAgV6nknEH8JUGlhaHvpaJh6BRvcXFJ/iv/fG73prVrKiAVA1zNfYYtGwMiETUnhyFVMlUAWAnAbLLY/7CIEBERUZBpAZTrDKEK+P2An1vnAEAREQfDoIk+fZ8xYpbt6Mklc588tHXDt05I5zJ/CeAYB3NbPgZEImo2TBa7OzXZ+AyAWm5kJyKippCabBQAaACURLSL1vrcLh/a9HtmAdqEi6EbdIVbbeyGvWnb9iyffpXt5NEjfkhVyL8CYGMwbD3a8JOdiJojbmQnIqImJg9c/vCIKJWv1tUmK2XLtAboe48UdQMneWp9YtX6tV9v+/CtGQXVlU4FgHQAX4PbP1olBkQiIiIiojPUAEQACA2PUPvcNW0nAAkyaBP6IaTvWE9IwsXCSevPx5e/8tK+DV+udomiCAC7AGw0WeyZTdtQakgMiEREREREZ6gQCIj60DCV3+1q9QFRFZsAXe/RPl2vkaKzvKx0048/7Ppk9v05RQUODYAqAOsA7DBZ7KVN3FRqBAyIRERERERn/CIgiu4aoYnb0wAEqI2J0HYf4tf2uMTrlyk9+8xp+764b9ahg7t3KiD9GxQAWAvggMlidzdte6kxMSASEREREZ2hPv2J3mBQ+2tbyREXMjm0nXtB032IN6T7ELHWXVtzeH/64U3/nP/z5nVfVYuiaACgBJAGYCuAE9xf2DYxIBIRERERnaE6/UmIzqAS3dWypmzMhZAbIqHt3AeqhH4eXdeBsoqSotI9e8wHvl9yjyV95zYXgChIeaAQwCoAh1gsjhgQiYiIiIjOqJtBDNHp1XDXtJiAKNMaoO3cC6rOfbyaLhf75SGhQu7JY1k70vcd+fbZ560nrD+LACIA6AC4AHwGYJ/JYs9v0oZTs8KASERERER0hgqAAACakBCV2GwDogBllBHquEQo47r6VJ16e1URMfL8rJP29EMHj+x4/+mTaZs35vt9vlAAYZCCYQGANZDOL8w2Wext8ggPOjcGRCIiIiKiM+oCYkiIViO6C5tFkRpFWDTUcV2hjOvqVxq7ebRxCYrammpXfk5W3rFjx06mf/FK9tbv1+bWulxyAOEAtAA6AjgJ4BsAPwPI575C+iMMiEREREREZ6hxOiBqtVqxrPGK1AhKNZSRRiijjFBEGkV5VEePsl28qImMU3rcLndBbnb+z7bjJ3/e8mnuri0me+6pk9UATgdCHYB4AG4AByEdZm/l0RR0vhgQiYiIiIjO0CBwzIVGo9X43RcaEAUIKjVkKi1kWj0UhijI9RFQGCIh6CO9Mn2UTx4aCaUhUqbQ6OSVZcXOkoL8olx7bl52Wnqh7cjK4kN7dxUV5efV1mufAUC7QDt9kGYH0wHYAOSZLHbfBTaa2jAGRCIiIiKiM/SQQhc8HrcnfOytXv3Qa3x+t0v0e9yAeI5tezKZIFNpIVdpBZlaI8hVGplcqZb7vB6f113r9biqaysryitLy8vKi4tLSoqPF1QU5h9wOnKznTmZJ5w2S0aF1+upvwRUBSkMxgT+LAAoB3AYwBEAmZD2EnqD/q9AbZYgilyGTEREREQEAKnJxpsAjATg0BkMisQevUL1hjClzmBQhej0SkE4+5ZEv98vVjor3BWlJbXlpSXu0uKi2rLiIvevQt+vCZD2C2oBhAS+JgKQAagCcAyABUAOgFwATu4jpIbEGUQiIiIiojN0CMwgVjmd3oO7d5b8xfsIkPYHaiDNBKoDH+UA/JBC4Om0WQhpRvAUAAeAosBVxTBIjY0BkYiIiIjoDA+kkKj+o2/8HUK9SwRQC8CJM6GvEEAJgIrA150AyrhElJoTLjElIiIiIgpITTaqAUQCUNa7fr2uVPzV525IYbD+Rzdn/6glYkAkIiIiIiIiANLmVyIiIiIiIiIGRCIiIiIiIpIwIBIREREREREABkQiIiIiIiIKYEAkIiIiIiIiAAyIREREREREFMCASERERERERAAYEImIiIiIiCiAAZGIiIiIiIgAMCASERERERFRAAMiERERERERAWBAJCIiIiIiogAGRCIiIiIiIgLAgEhEREREREQBDIhEREREREQEgAGRiIiIiIiIAhgQiYiIiIiICAADIhEREREREQUwIBIREREREREABkQiIiIiIiIKYEAkIiIiIiIiAAyIREREREREFMCASERERERERAAYEImIiIiIiCjg/wHoD6aYsSUxLgAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"f,ax=plt.subplots(1,2,figsize=(16,7))\n",
"df_train['Survived'][df_train['Sex']=='male'].value_counts().plot.pie(explode=[0,0.2],autopct='%1.1f%%',ax=ax[0],shadow=True)\n",
"df_train['Survived'][df_train['Sex']=='female'].value_counts().plot.pie(explode=[0,0.2],autopct='%1.1f%%',ax=ax[1],shadow=True)\n",
"ax[0].set_title('Survived (male)')\n",
"ax[1].set_title('Survived (female)')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"_cell_guid": "ff42aba4-3b8d-4e63-a086-9f6bcc82c0ae",
"_uuid": "76959c99bc83db9fc2896d3c7cea2eeef8ec4527"
},
"source": [
"Women were more likely to survive than men \n",
"\n",
"74 % of women survived\n",
"but only 19% of men\n",
"(in training set)\n",
"\n",
"-> second model :\n",
"all women survived and all men died\n",
"\n",
"submission : 0.766 accuracy\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"_uuid": "0ecbd7c1fb7a7f8facb218dc6abd1ac238e4bf68"
},
"source": [
"**Uncomment if you want to check this submission**"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"_cell_guid": "b879916b-19c7-48cf-a4ba-905f123e96f8",
"_uuid": "5a2d99bfb866df607fcf7d598d30d11815e1a9a2"
},
"outputs": [],
"source": [
"#df_test['Survived'] = df_test.Sex == 'female'\n",
"#df_test['Survived'] = df_test.Survived.apply(lambda x: int(x))\n",
"#df_test[['PassengerId', 'Survived']].to_csv('women_survive.csv', index=False)"
]
},
{
"cell_type": "markdown",
"metadata": {
"_cell_guid": "91aabc83-9f92-4e59-936c-e90fdddb0160",
"_uuid": "0bb33fe29a3977709a691c74fea426010d120a3c"
},
"source": [
"**Passenger Class : Survival rate decreases with Pclass**"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"_cell_guid": "b7182fb8-22cf-4adc-aebb-fb5842a753d6",
"_uuid": "b48eb33382fbc5ee059c5c851fac9cf010858508"
},
"outputs": [
{
"data": {
"text/html": [
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"
Survived01All
Pclass
180136216
29787184
3372119491
All549342891
"
],
"text/plain": [
""
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.crosstab(df_train.Pclass, df_train.Survived, margins=True).style.background_gradient(cmap='autumn_r')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"_cell_guid": "051feaa9-c5b0-4035-b002-4b9f2ff7e880",
"_uuid": "a943c91ea1ce0dd40e8d53c696432e346d6605ab"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"% of survivals in\n",
"Pclass=1 : 0.6296296296296297\n",
"Pclass=2 : 0.47282608695652173\n",
"Pclass=3 : 0.24236252545824846\n"
]
}
],
"source": [
"print(\"% of survivals in\") \n",
"print(\"Pclass=1 : \", df_train.Survived[df_train.Pclass == 1].sum()/df_train[df_train.Pclass == 1].Survived.count())\n",
"print(\"Pclass=2 : \", df_train.Survived[df_train.Pclass == 2].sum()/df_train[df_train.Pclass == 2].Survived.count())\n",
"print(\"Pclass=3 : \", df_train.Survived[df_train.Pclass == 3].sum()/df_train[df_train.Pclass == 3].Survived.count())"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"_cell_guid": "fc517397-1dc7-421e-bc8b-2e287e94ae75",
"_uuid": "8849e5a5a82f6a1dda18104bb649d304d1925fcd"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl4lOW9//H3ZCUhCYEQ9h3hZglbQNyXWndRobUqClhra10ObT1d1Z729JyfdrPLaYtKF1uLitYquCuWKi5FZZewfNn3PYQdsv/+mIGGyJLB5Lln+byuK9fMPHNP5pvL+MnNPffzfUK1tbWIiEjwUnwXICKSrBTAIiKeKIBFRDxRAIuIeKIAFhHxRAEsIuKJAlhExBMFsIiIJwpgERFPFMAiIp4kUgCnAd0ityIiMS+RwqoTsLq0dB81NepvISLBKyzMDUUzPpFmwCIicUUBLCLiiQJYRMQTBbCIiCcKYBERTxTAIiKeKIBFRDxRAIuIeKIAFhHxJLAz4ZxzvYHHgQKgFBhnZsvrjfkrMLDOoYHASDN7Mag6RUSCEuQM+FFggpn1BiYAE+sPMLNxZjbYzAYDtwBlwBsB1igiEphAAtg51wYoBiZHDk0Gip1zhSd42W3Ak2ZW3tT1iYj4ENQSRGdgo5lVA5hZtXNuU+T49vqDnXMZwE3AxdG+UUFBzqcs1Y9Zi7fw/Nsr+NyFp3F6v3a+yxGRAMRqN7SRwDozmx/tC+O1G9rjLy9m7da97N1XQbfC5r7LEZFTUFiYG9X4oNaA1wMdnXOpAJHbDpHjx/Il4LGAaosJhyqqjroVkcQXSACb2TZgPjA6cmg0MM/MjrX80Ak4D3gyiNpERHwJchfEHcB459wyYHzkMc65V51zw+qMuwV4yczKAqxNRCRwga0Bm9lS4IxjHL+y3uMHgqpJRMQnnQknIuKJAlhExBMFsIiIJwpgERFPFMAiIp4ogEVEPFEAi4h4ogAWEfFEASwi4okCWETEEwWwiIgnCmAREU8UwCIiniiARUQ8UQCLiHiiABYR8UQBLCLiiQJYRMQTBbCIiCcKYBERTxTAIiKeKIBFRDxRAIuIeKIAFhHxRAEsIuKJAlhExBMFsIiIJwpgERFPFMCe7T9UySsz11C6pxyAPQcq2LB9n9+iRCQQodraWt81NJZuwOrS0n3U1MTHz7RzzyF++tRctu86dNTx1JQQd1zbn6GujafKRORUFBbmhqIZrxmwR09MW/aJ8AWorqnljy8vZv+hSg9ViUhQFMCelO0tZ8GKHcd9vryyhg8Xbw2wIhEJmgLYk517DnGyhZLtuw4GUouI+KEA9qRF84yTjsnPyQygEhHxRQHsSev8LPp0yT/hmOrqmoCqEREfFMAejbnUkZOVftzn/z5jFc/NWEkC7VQRkToUwB51aN2cH3xxGBcVdyQlsnklIz2FzxR35PBelldmruWPLy+hSrNhkYSjAPasdYssxlzqKMzPAqBlTiZjL3XcObKItNTwf56Zi7bw62cXcLC8ymepItLIFMAxalifNnx79GCaN0sDYPGaMn78xFzK9pZ7rkxEGosCOIb16pTPfWOHUpDXDIAN2/fxwKTZbNyx33NlItIYFMAxrn1Bc+4fN5QubXMA2LmnnB9PmoOtK/NcmYh8WgrgOJCfk8l3byqmf/dWABwor+IXz8xn1tJtnisTkU9DARwnsjLT+Pp1AzmnqB0AVdW1PDq1hGmz1nuuTEROlQI4jqSlpvClq/py9dndAKgFnp6+nKenL6dGe4VF4o4COM6EQiFGnd+DcZc7QpHNwtNmrefRFxZRWVXttzgRiUpaUG/knOsNPA4UAKXAODNbfoxx1wP/BYQIT/IuNjO1BavnwsEdyc/J5NEXSqiorGH20m3s2V/B+M8PoHmz459dJyKxI8gZ8KPABDPrDUwAJtYf4JwbBvw3cImZFQHnArsDrDGuDD6tNd8ZXUxudjhwl63fxYOT5lC6+5M9hkUk9gQSwM65NkAxMDlyaDJQ7JwrrDf0HuAhM9sCYGa7zUxpcgI9OuRx39ihtGkZPpNuc+kB/t+k2azbutdzZSJyMkHNgDsDG82sGiByuylyvK5+QA/n3DvOubnOue8756K6xEcyatsym/vGDqV7+zwAdu+r4CdPzmXRmp2eKxOREwlsDbiBUoGBwCVABvA6sA74a0O/QUFBTtNU1sRSI30fUlNTKCzMjfr1hcDPxp/Hz5+Yw0eLt3Cooppf/20BX7thCBcNq/93TkRiQVABvB7o6JxLNbNq51wq0CFyvK51wN/NrBwod869AAwnigCOp4ty1nW49291dQ3bt5/68sFXRvQhOyOFt+dvorqmll9Nnsu6Tbu48syuhEL6x4RIU4p28hTIEoSZbQPmA6Mjh0YD88xse72hTwGXOudCzrl04LPAgiBqTBSpKSmMvczxufN7HDn23IxVPDFtWVz+YRJJZEHugrgDGO+cWwaMjzzGOfdqZPcDwNPANmAx4cBeBPwpwBoTQigUYsTZ3bjtqr6kRhoNvzVvI797fiHlldorLBIrQgl0tYVuwOp4XYK4d+JMtpYdpG3LLH781bMa7fuWrC5lwpQSyivCwduzQx5fu24gudknvyadiESnsDA3qnU+nQmX4Iq6F3DvzcVHLgK6ctMeHpw0h21lBzxXJiIK4CTQpW0u948bSvuCbAC2lh3kwUlzWL15j+fKRJKbAjhJtG6Rxb1jhtK7UwsA9hyo5KdPzWXBih2eKxNJXgrgJJKTlc43bxzMsMgJiBWVNfz2uYW8s2CT58pEkpMCOMmkp6Vyx8giLh7WCYCa2lr+8tpSpr67igT6QFYkLiiAk1BKKMRNF/fmhotOO3LsxffX8OdXl1IVOSFERJqeAjiJXTa8C3dc25+01PDOmfcWbuY3z33MoYoqz5WJJAcFcJIb3rct37xhMNmZ4bPSS1bt5KdPzmP3vnLPlYkkPgWw4Lq05N4xxbTKywRg7da9PDBpDptL93uuTCSxKYAFgI6FOdw/dhidCsPd5HbsPsSDk+awfMMuz5WJJC4FsBzRMjeT791cTN+uLQHYf6iKh56ez5xP9EwSkcagAJajZDdL457rB3Fm/7YAVFbV8PCUhUyfs8FzZSKJRwEsn5CWmsKXR/TjyjO7AuEroz755jKefWsFNdorLNJoFMByTCmhENdd2JMxl/bmcB/31z5cxx9fWkxllfYKizQGBXCMaJaRdtRtrLiouBP/MWoA6WnhX5UPFm/lV3+bz4FDlZ4rE4l/CuAYMfK87vTpks/I87r7LuUThvQu5Nujh5CTlQ7A0nW7+PGTc9m5RxesFvk01JBdGmzLzgP88pn57NgdDt6WuZncc/2gI1vXRJKdGrJLk2nXKpv7xw2ja7vwhQfL9pbz4yfmsmRtmefKROKTAlii0qJ5Bt+9aQgDehQAcLC8il/9bT4fLt7quTKR+KMAlqg1y0hj/OcHcO7A9gBUVdcy8cVFvP7hOrW0FImCAlhOSVpqCrde0Ydrz/33h4Z/e2sFT/1judbgRRpIASynLBQKce253bn1ij6kRDYLT5+zgUemllBRWe25OpHYpwCWT+28QR342nUDyUxPBWDOsu089Mx89h3UXmGRE1EAS6MY2LOA79w0hLzs8F7hFRt28+CkOezYddBzZSKxSwEsjaZ7+zzuGzeMti2zgPC+4QcmzWHtlr2eKzu5BSt28NMndZVoCZYCWBpVm/ws7hs7lJ4d8wDYvb+Cnzw1l5JVpZ4rO7Gp767G1u9i6rurfZciSUQBLI0uNzuDb904hCG9WgNQXlHNr5/9mPc+3uy5suM7fB08XQ9PgqQAliaRmZ7K3aMGcFFxRwBqamt57NUlvPj+au0VFolQAEuTSUkJcfMlvbnuwp5Hjk19dzWPv25U16ilpYgCWJpUKBTiyjO78pWr+5GaEt4r/M6CTfz2uYWUV2ivsCQ3BbAE4qz+7bjn+kFkZYb3Cn+8spSfTZ7Lnv0VnisT8UcBLIHp160V37t5KPk5GQCs3ryXByfNYevOA54rE/FDASyB6twmh++PG0bH1s0B2LbrIA9MmsPKTbs9VyYSPAWwBK5VXjPuHVOM65wPwL6Dlfz8qXnMW77dc2UiwVIAixfZzdL5zxsGM7xvGwAqqmr43fMLeWveRs+ViQRHASzepKelcPs1/blseGcAamth0hvGczNWaq+wJAUFsHiVEgpxw0W9GP3ZXhy+mNYrM9fyp1eWUFWtvcKS2BTAEhMuOb0zd44sIi01/Cv5r5It/N+zCzhYrlODJXEpgCVmDOvThm/dOJjmzdIAWLSmjJ88OZeyveWeKxNpGgpgiSm9O+dz75ihFOQ1A2D9tn08OGk2G3fs91yZSONTAEvM6dC6OfePG0qXNjkAlO4p58eT5rBs/S7PlYk0LgWwxKT8nEy+e3Mx/bu1BOBAeRUPPT2f2Uu3ea5MpPEogCVmZWWm8fUvDOLsonYAVFXX8MjUEqbNWu+5MpHGoQCWmJaWmsJtV/VlxNldAagFnp6+nKenL6dGe4UlzimAJeaFQiE+d35Pxl3mCEU2C0+btZ6JLyyiskotLSV+KYAlblw4pCPjPzeQjLTwr+2spdv4xTML2H+o0nNlIqcmLag3cs71Bh4HCoBSYJyZLa835r+Bu4BNkUPvm9ndQdUosW9wr9Z856Zifv3sAvYdrGTZ+l38+Im53POFQRS0aOa7PJGoBDkDfhSYYGa9gQnAxOOM+6uZDY58KXzlE3p0yOP+cUNpk58FwKYd+3lg0mzWbd3ruTKR6AQSwM65NkAxMDlyaDJQ7JwrDOL9JfG0bZnNfWOH0r19LgC79lXwkyfnsnjNTs+ViTRcUEsQnYGNZlYNYGbVzrlNkeP1m8De6Jy7FNgC/NDMZkbzRgUFOY1Rr8SBwkL42fjz+dkTs5m1eCuHKqr51d8W8PUbh/CZoZ2j+l6pkR4UqakpFBbmNkW5Ip8Q2BpwAz0KPGBmlc65S4AXnHN9zay0od+gtHQfNTXanpRMbh/Rl+yMVGbM30R1TS2/fGouazfu4sozuxI6vG3iJKojndeqq2vYvl1LGXJqov3jHdQa8Hqgo3MuFSBy2yFy/Agz22JmlZH7b0aeLwqoRolTqSkpjLvMMer8HkeOPTdjFU9MW6Y/xhLTAglgM9sGzAdGRw6NBuaZ2VHLD865jnXuDwa6ARZEjRLfQqEQV5/djduu6ktqSnjW+9a8jUyYspDySu0Vlth0wiUI59wkwicfnZCZjWvAe90BPO6c+wFQBoyLvMerwA/MbDbwoHNuKFANVABjzWxLA763CADnDGhPi5wMJkwpobyimnnLd/DQ5Hl87bqB5GZn+C5P5CgnWwNeUed+a+AW4CVgLdAFuJrw3t6TMrOlwBnHOH5lnfu3NOR7iZxIUfcCvhfZK7x7fwUrN+3hwUlzuOeGwUe2ronEghMGsJn96PB959wbwFVm9m6dY+cC/9V05Ymcmq7tcrl/7FB+9ewCNpceYGvZQR7862y+/oVBdG+f57s8ESC6NeAzgQ/qHfsQOKvxyhFpPK3zs7h3zFBO69QCgD0HKvnpU3P5eOUOz5WJhEUTwPMIr9FmAURuHyD84ZpITMrJSufbNw5maOScn4rKGn7z94W8s2DTSV4p0vSiCeAvAucAu51zW4HdwLmE14VFYlZ6Wip3XlvExUM7AVBTW8tfXlvK1HdXUauWluJRg0/EMLM1wNnOuc6E9/BuNrN1TVWYSGNKSQkx+uJetMprxt/eCn+2/OL7a9i5p5zh/dqyZ38FAPsOVrJj10Fa68M6CUAomhmAc64AuBJob2Y/c851AFLMbENTFRiFbsBqnQknJ/Ph4q386ZXFVFUf+/ckNSXEbSP6cma/dgFXJvGusDC3YadeRjR4CcI5dwHhkyJu5t87H3oBj0TzhiK+ndGvLf95/WDS0479619dU8sfX17C1rIDAVcmySaaNeBfAzeY2eVAVeTYh8DwRq9KpIm5Lvk0b3b8FbiamlpmzNMHddK0ogngbmY2PXL/8L/dKoi9hj4iJ1VeWc2ufRUnHLNh+76AqpFkFU0AL3bOXVbv2MXAwkasRyQQ6Wkpx12COCz7BDNkkcYQTQB/E3jSOfc4kOWcmwj8Bfh2UxQm0pRSU1IY5tqccMwZ/doGVI0kqwYHsJl9AAwCFgGPAauB4WY2q4lqE2lSo87rTl7zYzfoCQG52enBFiRJp8Hb0Jxzg80sls9664a2oUmUtu06yPMzVvLRkm1AOHgP//a0ysvkh188XV3UpMGabBsaMM05t8g5933nXPco6xKJSW3ys7jj2iLatAyfeFHYMouhvcOnLe/cU84fXlqsP+jSZKIJ4PbAd4A+wALn3Ezn3PjIBTdF4lqozu2tV/Y9Esglq3fy0r/W+CpLElw0a8DVZvaKmY0B2gL/B1xHvcsKicS77GZp3D1qABmRXRIvvreaktUNviyhSINFfUki51wzYARwAzAMePfErxCJP53b5DD2MgeE14R//+Jidu455LcoSTjRnIp8pXPuCWAb4S1pM4CeZnZxUxUn4tM5A9pz/qD2QLhJz8NTS6iKXD1ZpDFEs9P8IWAyMMTMVjZRPSIx5eZLerNmy17Wbd3Hqk17eOafK7j5kt6+y5IEEU07yn5NWYhILEpPS+WuUQP4nz/P4kB5FdPnbKBXpxYM76uTNOTTO9lVke83swci9//neOPM7AeNXZhIrGiTn8VtI/ry2+fCZ93/+bWldG6TQ/uC5p4rk3h3sjXgTnXudz7OV6djvE4koQzpVcgVZ3YBoLyimglTSjhUUXWSV4mc2Mmuinxnnfu3Nn05IrHrc+f3YPWmPSxdt4tNO/bz19eNr1zdj1AoqpOfRI6IZhfEVOfcFyLb0ESSTmpKCl+9pj8tcsKnJn+weCtvz9vouSqJZ9HsA55BuPPZVufc4865y5xzUe8jFolnLXIyueOa/qREZr2Tpy9n9eY9nquSeBXNmXC/MrPhhE++WEX4ChmbnHO/aariRGKR69KSz1/YA4Cq6loenrKQfQcrPVcl8SjqGayZLTezHwE3Ah8Ddzd6VSIx7vLhXRjSqzUApYeb9ugS9xKlqALYOdcz0g1tEfAmsBy4oEkqE4lhoVCI267qS5vI5esXrirlFTXtkShF8yHcLGAu0Bv4FtDBzO42s/eaqjiRWJbdLJ27RhUdubTR1HdXs2jNTs9VSTxpUAA750LAs0BnMxtnZq+ZmTZBStLr0jaXMZFTk2uBiS8sUtMeabAGBbCZ1QI/BHSZWJF6zhvUgXMH/rtpzyMvqGmPNEw0a8DzCC8/iEg9Yy7pTZc2OQCs3LiHZ99Svyo5uWi6ob0NvO6c+wvhJuxHPvI1s8catyyR+JKRnspdo4r40V9mc7C8ijdnr+e0Ti04vY8uGCPHF80M+BzCV0K+ABgDjI18jWmCukTiTpuW2dx2Vd8jjx97dQmbS/d7rEhiXTTtKD/TlIWIJILi3oVcfkYXXv9wHeUV1Tw8pYTvjxtGZkaq79IkBjU4gE902rGZ6RMHkYjPX9CDVZv2sGz9Ljbu2M9f31jKl0eoaY98UjRLEFVA5XG+RCQiNSWFO67tT17zcNOemYu2MmP+Js9VSSyKJoC7Az3qfJ0DvATc3gR1icS1/EjTnsOT3qf+sUxNe+QTomnGs7be1wfALcB3m648kfjVp2tLPn9BT+Bw054SNe2Ro3zadpJ5QGFjFCKSiK44owuDTzvctOcQf3xZTXvk36L5EG4Sdfb+AtnA+cATjV2USKIIhUJ8eURf/vvPs9ix+xAfryzl1ZlrGXF2N9+lSQyIZga8AlhZ52smcJOZjW+KwkQSRXazdO4eNYC01PD/blPeXcViNe0RGhDAzrmhzrkiM/tRpA/wI4ADxgHXOedymrpIkXjXtV0uYy6NNO2phYkvLqJsb7nnqsS3hsyAfw20q/P498Bpkdsi4GdNUJdIwjlvYHvOGRD+X2nvATXtkYYFcF/gXQDnXD5wFTDGzCYAo4Grm648kWA0y0g76rYphEIhxlzq6FQY/kfjig27+fvbatqTzBoSwGlAReT+mcBmM1sGYGbrgfyGvJFzrrdzbqZzblnkttcJxjrn3AHn3EMN+d4in9bI87rTp0s+I8/r3qTvk5meyt2jisjKDJ+aPG3WemYv3dak7ymxqyEBvAj4QuT+jcA/Dj/hnOsI7G7gez0KTDCz3sAEYOKxBjnnUiPPTW3g9xX51Aad1prv3FTMoMiWsabUtlU2X7ry6KY9W3YeaPL3ldjTkAD+LjDRObeT8PLDT+s8dwPw/sm+gXOuDVAMTI4cmgwUO+eOtYf4e8DLwLIG1CYSl4a6Nlw2vDMAhyqqeXjKQsorqz1XJUE76YKXmb3nnOtCuBn7MjPbW+fpV4CnG/A+nYGNZlYd+Z7VzrlNkePbDw9yzg0CLgM+A/xXg3+KOgoKtClD4sMd1w1m/fb9LF69kw3b9/PsjFV848YhatqTRBr0iUMkdOcc47g1ViHOuXTCOytujQT0KX2f0tJ91NToTCOJD7dd2Zcf/fkj9hyo5J+z19O5dTYXDO7ouyw5RYWFuVGN/7SnIjfUeqBjZH338Dpvh8jxw9oDPYFXnXNrgG8AX3HO/T6gGkUC1zI3k69eW3Skac+Tby5n7Za9J36RJIxAAtjMtgHzCW9bI3I7z8y21xmzzsxam1k3M+tGeP/xH8xM3dYkofXt2pLPnd8DgKrqGiZMWcj+Q2rakwyCmgED3AGMd84tA8ZHHuOce9U5NyzAOkRizhVndmVQzwIAduw+xJ9eXqKmPUkgVJs4/5G7Aau1Bizxav+hSn4UadoD4StrXHVWN79FSVQKC3Oj+gQ1yBmwiJxA82bp3DWqiLTU8P/Dz7+ziiVryzxXJU1JASwSQ7q1y+OmS+o07XmhRE17EpgCWCTGXDCoA2cXhZv27DlQyUQ17UlYCmCRGBMKhRh7maNjYXMAlm3YzfMzVnmuSpqCAlgkBoWb9gygWUa4ac/rH61jzr93bUqCUACLxKh2n2jas5itZWrak0gUwCIxbFifNlx6erhpz8Hyah6eUkKFmvYkDAWwSIy77sKenNaxBQDrt+3jiWlqFJgoFMAiMS4tNYU7RxaRm50OwHsLN/POgk2eq5LGoAAWiQMtczP56jX9OXya1RPTlrFuq5r2xDsFsEic6Net1ZFLJh1u2nNATXvimgJYJI5cdXY3Bkaa9mzfdYg/vbKEBOrnknQUwCJxJCUU4ssj+lGQ1wyAect38PqH6zxXJadKASwSZ3Kyjm7a89yMVdg6Ne2JRwpgkTjUvX0eoz/bC4Ca2loefWERu/apaU+8UQCLxKkLh3TkzP5tAdi9v4JHX1hEdY2a9sQTBbBInAqFQtxyWR86to407Vm/S0174owCWCSOZWakcteoIjIjTXte+3Ad85apaU+8UACLxLn2Bc259Yo+Rx7/8ZUlbFPTnrigABZJAMP7tuXioZ0AOFhepaY9cUIBLJIgrr/oNHp2zANg3bZ9PPmmmvbEOgWwSIJIS03hzmuLyMkKN+159+PNvPuxmvbEMgWwSAJplddMTXviiAJYJMH0796Ka88NN+2prKrh4aklHDhU5bkqORYFsEgCGnFON4p6tAJgW9lB/vTKYjXtiUEKYJEElBIKcfvV/WmVlwmEm/a88dF6z1VJfQpgkQSVk5XOXSMHkJoSXhH++9srWbZ+l+eqpC4FsEgC69EhjxvrNO155IUSdqtpT8xQAIskuIuKO3JGv0jTnn0VTHxRTXtihQJYJMGFQiFuudzRviAbgKXrdjHlndWeqxJQAIskhWYZadw9agCZ6eGmPa9+sJb5y3d4rkoUwCJJokPr5nyxbtOelxezbddBjxWJAlgkiZzRry2fLQ437TlQXsUjU0qorFLTHl8UwCJJ5obPnkaPDuGmPWu37uXJN5d7rih5KYBFkkz9pj3vLNjE+ws3e64qOSmARZJQQYtm3H51vyNNeya9YWzYts9rTclIASySpIp6FHD1Od0AqKiqYcKUhWraEzAFsEgSu+ac7vTvHm7as7XsIH9+dYma9gRIASySxFJSQtx+dT9a5oab9sxZtp03Z6lpT1AUwCJJLjc7g7tGFh1p2vPs2ytZvkFNe4KgABYRenZswQ0XnQZAdU0tj0wtYc/+Cs9VJT4FsIgA8NmhnRjetw0AuyJNe2pqtB7clBTAIgIcbtrT50jTniVry5j63irPVSU2BbCIHJGVmcZdI4vISA9Hw8v/WsuCFWra01QUwCJylI6FOXzx8qOb9uxQ054mEQpqz59zrjfwOFAAlALjzGx5vTG3AvcANUAq8Acz+00D36IbsLq0dJ/WrUQawaRpxltzNwLQtV0u940pJj0t1XNVsa2wMDd08lH/FuQM+FFggpn1BiYAE48x5jlgkJkNBs4GvumcGxhgjSISceNFvejePheAtVv2Mnn6Cs8VJZ5AAtg51wYoBiZHDk0Gip1zhXXHmdkeMzs8fc0G0gFNZ0U8SE9L4c6RRTRvlgbA2/M2MrNki+eqEktQM+DOwEYzqwaI3G6KHD+Kc+4a59wiYC3wczNbGFCNIlJP6xZZfOXq/kea9jz++lI2bFfTnsaS5ruA+szsReBF51wXYKpz7lUzs4a+vqAgp+mKE0lCny3MZfOugzzz5jIqqmqY+OIifvmNC8hulu67tLgXVACvBzo651LNrNo5lwp0iBw/JjNb55z7CBgBNDiA9SGcSOO7ZEhHFi7fzuI1ZWzcvp+fT5rNndf2JxSK6jOnhFdYmBvV+ECWIMxsGzAfGB05NBqYZ2bb645zzvWtc7818BlASxAinqWkhLj9mv5HmvbMXrqNf8ze4Lmq+BfkLog7gPHOuWXA+MhjnHOvOueGRcbc7pxb5JybD0wHfmdm0wKsUUSOIy87gzvrNO3521srWLFht+eq4ltg+4AD0A3tAxZpcm/OWs/k6eEt/C1zM/nhF08nr3mG56piQyzvAxaRBHDxsE4M6xNu2lO2t5zfv6SmPadKASwiUQmFQtx6RR/atgo37Vm8powX3lvtuar4pAAWkahlZaZx96giMtLCEfLSv9bw8cpSz1XFHwWwiJzcL5nuAAAIoElEQVSSToU5jLvcHXn8h5cWsWO3mvZEQwEsIqfs7KL2XDi4AwD7D1XxyNQSKqtqTul7LVixg58+OTep2l8qgEXkUxl9cS+6tgufgLB6816e/ufyk7zi2Ka+uxpbv4up7ybPerICWEQ+lfS0VO6u07Tnrbkb+WBR9E17DlVUHXWbDBTAIvKptc7P4ssj+h15/JfXl7JRTXtOSgEsIo1i0GmtueqsrgBUVNYwYUoJB8uTZzZ7KhTAItJoRp3Xg75dWwKwZecBHn99KQl0tm2jUwCLSKNJSQnx1Wv6k58TPjX5oyXbmD5HTXuORwEsIo0qr3kGd1xbREqkVeUz/1zByo1q2nMsCmARaXS9O+fzhc/0BKC6ppaHp5aw90CF56pijwJYRJrEpad3Zmjkso/hpj2L1bSnHgWwiDSJUCjEl67sS9uWWQAsWr2TF99PnpMsGkIBLCJNJiszjbtGDfh3057317BwlZr2HKYAFpEm1blNDmMvCzftqQX+8NJiSncf8ltUjFAAi0iTO2dAe84fFG7as+9gJY+8UEJV9ak17UkkCmARCcTNl/SiS9scAFZt2sMz01d4rsg/BbCIBCI9LZW7Rg0gOzPctGf63A18uHir56r8UgCLSGDa1G/a89pSNu3Y77EivxTAIhKowb1ac+WZ4aY95ZXV/Pb5j3ntg7XsPVAJQE0S9Y5QAItI4Ead350+XfIB2LrzIM++vZIDkc5p23cd4v2Fm32WFxgFsIgELjUlhSsis+BjeeyVJazYkPj9IxTAIuLFzJLjXzWjFpg2a11wxXiiABYRL1ZuOvEMd+WmPQFV4o8CWES8yEhLPcnziR9Pif8TikhMGtK78ITPF5/k+USgABYRLy4e2omWuZnHfK5FTgaXnN454IqCpwAWES/ymmfwvZuLGdCj4KjjGWkpfO/mYvJzjh3OiUQBLCLeFOZncc/1g3jorrNpFZkNt8zNpG3LbM+VBUMBLCLetcprRnoSfOhWX/L9xCIiMUIBLCLiiQJYRMQTBbCIiCcKYBERTxTAIiKeKIBFRDxRAIuIeKIAFhHxRAEsIuKJAlhExBMFsIiIJwpgERFPFMAiIp6kBfVGzrnewONAAVAKjDOz5fXG/BdwI1ANVAL3mdkbQdUoIhKkIGfAjwITzKw3MAGYeIwxHwGnm9lA4EvAM865rABrFBFPmmWkHXWbDAIJYOdcG6AYmBw5NBkods4dddU9M3vDzA5EHn4MhAjPmEUkwY08rzt9uuQz8rzuvksJTFB/ajoDG82sGsDMqp1zmyLHtx/nNeOAlWa2IZo3KijI+VSFiogfFxfmcvFZyRO+EOAacDSccxcA/wtcEu1rS0v3UVNT2/hFiYicRGFhblTjg1oDXg90dM6lAkRuO0SOH8U5dxbwBDDSzCyg+kREAhdIAJvZNmA+MDpyaDQwz8yOWn5wzp0OPANcZ2Zzg6hNRMSXIJcg7gAed879ACgjvMaLc+5V4AdmNht4GMgCJjrnDr9urJktDLBOEZFAhGprE2a9tBuwWmvAIuJLYWFuKJrxOhNORMQTBbCIiCcKYBERTxTAIiKexOSJGKcoFSAlJao1cBGRxtQN2ABUNWRwIgVwe4CWLZv7rkNEktdqoDuwpiGDE2kbWiZwOrCZcDtLEREfGjwDTqQAFhGJK/oQTkTEEwWwiIgnCmAREU8UwCIiniiARUQ8UQCLiHiiABYR8UQBLCLiSSKdihy3nHMPAZ8nfB75ADMr8VtRcnHOFQCTgJ5ABbAc+Gr9S2ZJ03HOTSV8Cm8NsA8Yb2bz/VbV9DQDjg1TgfOBtb4LSVK1wM/MzJnZAGAl8BPPNSWbW8xskJkNAR4CHvNdUBA0A44BZvYeQJ3r4EmAzGwn8HadQx8Ad/qpJjmZ2e46D1sQngknPAWwSB3OuRTC4fui71qSjXPuj8ClQAi43HM5gdAShMjRfkt4DfJ3vgtJNmb2ZTPrAtwH/Nx3PUFQAItERD4M7QXcYGZJ8U/gWGRmk4DPRD4cTWgKYBHAOfcgMBQYaWblvutJJs65HOdc5zqPrwZ2Rr4SmvoBxwDn3G+AzwHtgB1AqZn191tV8nDO9QdKgGXAwcjh1WY2yl9VycM51xZ4AWhO+GIKO4Fvmdlcr4UFQAEsIuKJliBERDxRAIuIeKIAFhHxRAEsIuKJAlhExBMFsCQl59yFzrkNvuuQ5KZeEJIQnHNrgLaE95HuB14D/sPM9nksS+SENAOWRHK1meUAxcAw4Pue6xE5Ic2AJeGY2Ubn3GtAkXOuFfAL4DIgC5hhZiPrv8Y59z3gK0AbYD1wv5lNiTx3GvAnYDBQCUw3sxuccyHgl8DNQDPC/ZxHq6G+NJRmwJJwIn0FrgTmEb7SRTbQn3C4/uo4L1sJnEe4F+2PgCecc+0jz/0vMA1oCXQi3DENwq0Tzwd6R153PVDayD+OJDDNgCWRTHXOVQG7gVeAh4GNQIGZlUXGzDjWC83s2ToPn3HO3QsMJ9yjoBLoCnQwsw3Ae5FxlUAu0Af4yMyWNPLPIwlOASyJZKSZ/ePwA+fccGBnnfA9LufcOOA/CV+XDyAHaB25/x3Cs+CPnHNlwC/M7DEz+6dz7nfABKCrc+55wk1k9jTaTyQJTUsQksjWA62cc/knGuSc6wr8AfgPwrPlfMLd0UIAZrbFzL5iZh2ArwIPR9aFMbPfmNlQoB/hpYhvN9lPIwlHM2BJWGa2OfJh3MPOubsJX+niLDN7p97Q5oQvzLkdwDl3K1B0+Enn3BeAmZHlh7LI2Brn3OmEJzFzCW99O0SSXMtMGodmwJLoxhJeq10KbAO+UX+AmS0mvFNiJrAVGAC8X2fI6cCHzrl9hK8V93UzWwXkEZ45lxHeAVFKklxKRxqH+gGLiHiiGbCIiCcKYBERTxTAIiKeKIBFRDxRAIuIeKIAFhHxRAEsIuKJAlhExJP/D8zVRXtIl3ifAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.catplot('Pclass','Survived', kind='point', data=df_train);"
]
},
{
"cell_type": "markdown",
"metadata": {
"_cell_guid": "aaccbc96-a530-47df-88d4-0f2e3a6abcf0",
"_uuid": "5dce35a66e5506d07a18cabb0f3440897d459aa7",
"collapsed": true
},
"source": [
"**Passenger Class and Sex :**\n",
"\n",
"**Almost all women in Pclass 1 and 2 survived and nearly all men in Pclass 2 and 3 died**"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"_cell_guid": "620eed70-7c9e-408d-b401-30ee97efd139",
"_uuid": "e6bf54da5ad3bf4951330540a5671a2129990b52"
},
"outputs": [
{
"data": {
"text/html": [
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"
Pclass123All
SexSurvived
female0367281
1917072233
male07791300468
1451747109
All216184491891
"
],
"text/plain": [
""
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.crosstab([df_train.Sex, df_train.Survived], df_train.Pclass, margins=True).style.background_gradient(cmap='autumn_r')"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"_cell_guid": "d716de50-8e5f-4a26-9cb9-e95c76e526a3",
"_uuid": "5377daafd312ed7e33376c2599d52d4c4db3ce5b"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAFgCAYAAADuCe0ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XeYVOXd//H3mbI7W6jL0hQERW5soIBgVxSjMfYSNUVjjNFofJ48MfXRFKOm+yS/RGyxRo0xxigaWxB7A1HABjdVOktvy8zulPP748wuu7ALuzA75+zM53VdXLPnzJmZ7+rCZ+9z7vO9Hdd1ERERCZqQ3wWIiIi0RAElIiKBpIASEZFAUkCJiEggKaBERCSQFFAiIhJICigREQkkBZSIiASSAkpERAJJASUiIoFUSAEVAQZlH0VEpJMrpH/M9wYWrl27hUxG/QVFJP+qq7s4ftdQSAppBCUiIgVEASUiIoGkgBIRkUBSQImISCApoEREJJAUUCIiEkgKKBERCSQFlIiIBJICSkREAkkBJSIigZSXVkfGmN8D5+H1yjvEWvtxC8eEgT8BpwIu8Gtr7T35qE9ERIInXyOop4DjgEU7OebLwBBgf+BI4OfGmEEdX5qIiARRXgLKWvumtXbJLg67EPiLtTZjrV2NF2oXdHx1wZBaPIOtz/yK1OIZfpciIhIIQepmPpDmI6zFwID2vklVVWXOCsqnpU8/TXrlAtJukn6jjvW7HBER3wUpoHKisy63kYzXNj6uXr3Z52pEZHdUV3fxu4SCEqRZfIuBfZpsDwR2dVpQREQKVJBGUI8DVxhj/gVUAWcDOtclIlKk8jKCMsb8yRizFG/V25eMMZ9k9z9njBmdPewhYAEwF3gX+IW1dmE+6gsEN3tasvOdnRQR6RCO6xbMv4iD6IRLvqfXL6f+vSdIffa+t8MJUTr2AqIHn4ITCtIZWBHZFS35nltBOsVXdNLrlrH16ZuhPr5tp5uh7t3HSK9bRuz4y3Ec/byLSHHSr+g+qpvyWPNwaiI1500yq+bnuaLipnvRRIJFAeUTt66W9JKPdnpM4t3HSC2aQWbDCtx0Kk+VFa+6aU+SXmGpm/ak36WICDrF5xu3fiu7mhGRqZlL/MU/ehtOCKeyilC3Ptk/fQl19b52uvTCCYU7vugC5yYTzR5FxF8KKJ845T2gtALqatv2AjeDu3k16c2rSS/drteuE8bp2qsxsJoGmFNZpckWItIpKaB84oQjlAw7nvqZz7V8QDhK6XGXQWILmY01ZDbVkNlYg7tlzbYp6Q3cNO7GGtIba0hvf2tzKEKoa29vpNWtT7MQcyp64DgKLxEJJgWUj0pGnU163VLSSz5s/kQ4StnJ1xAZeOgOr3HTSTKbV+NuqCGzaaUXXtk/bu26HT8kkyKzYTmZDct3fC4cbR5YTQLMKe+uGYQi4isFlI+cSAllp36H9JIPiU++E5IJKK2g4rybCFX2bPk14Sjh7v2he/8dnnNT9WQ2rdoWWE0CzN26Ycc3SyfJrF9KZv3SHZ+LlBLq1jsbWH2bBZhT1lXhJSIdTgHlM8cJERl4KE55N9yNCZxYZavhtMv3ipQQ7rk34Z577/Ccm6xrPE24LcBqyGxciRvftOObperIrF1CZm0L7RCjZU3Ca1uAhbr1xYl1zm7yIhI8Cqgi4URLCVcNJFw1cIfn3Pr4DuGV2VSDu7EGN9FCZ/VknMyaRWTWtLD+ZGnFdpM1mpw2LK3ogO9MRAqVAkpwSsoI9xpEuNegHZ5z62qzobWy2WSNzMYaqN+645vV1ZJZvYDM6gU7fk6syw4TNRoCzCkp64DvTEQ6MwWU7JRTWkG4976Ee+/bbL/rurh1W3AbR13NA4wW7iVyE5txE5vJ1Mzb8XPKunqnCFsKr2hph31/IhJcCijZLY7j4MS6QKwL4T5Dmj3nui5ufFPjacLGAGsIr1T9Du/nxjeRjm+ClXN2/Kzy7ttmGnbt2yS8euNESnLy/bipesikc/JeIpIbCijJOcdxcMq7ESrvBn2HNnvOdV3crRuaXedqet2LdHKH93O3biC9dQPpFXb7T8Kp7NnsOlfjbMMuvXHCu/7xdpMJ6t57gqR9o3HU59ZuILNxJaFufXf7v4GI7DkFlOSV4zg4FT0IVfSA/sOaPee6Gdza9c1PGTbMNty0GjLb9yN0cbesJb1lLelln27/QTiVvXYIr22toSK46RTx5/+P9PajtlQdWyfeQvk5PyXUpTr3/xFEpE0UUBIYTkO/wcoq2OvAZs+5mQzulrXZ04Qrm8823LQG3O1Oz7nuttZQtNAaqksvnEgJmXUtTKPHu15W/8EzxI7/ei6/RRFpBwVUQDjRGG72UXbkhEI4XasJda2GvQ9u9pybSeFuXttkkkaT0VdrraE21exy8eLkgqmUHneZbkoW8YkCKiBKR59D/cwXKBlxqt+ldDpOKOJdd+rWZ4fn3HQKd/PqZiOuhlOI7pa1O3/jZAKv47wCSsQPCqiAiAw8tMXee7JnnHAEp3s/Qt377fBc/M2/kvr05VZfG+o5QM10RXykv31StEoPPhl2EkCR/cbmsRoR2Z4CSopWqHs/YideCaGWTySkFkz17o8SEV8ooKSoRfcbS8XFv6Nk9LnQMEElG1iZtYupe+thH6sTKW4KKCl6oYoelI48E6e8GwBORXecUq8re9K+TnL2636WJ1K0FFAi2wuFiZ10FQ2z9xJvPUS6pc7tItKhFFAiLYjsfTAlo8/2NtJJ4pNuw62r9bcokSKjgBJpRclhZxAeMBwAd/Nq4q/8BdfN+FyVSPFQQIm0wnFClI37Jk5lFQDpxTOon/mcz1WJFA8FlMhOOLFKyk7+duPMvvr3niC1fJbPVYkUBwWUyC6EqwdTevRXvA3XJTH5DjK16/0tSqQIKKBE2iA67Hgi+x8NeIsrxl+agLvD8h8ikksKKJE2cByH2LGXEOq5NwCZmnnUvfsPn6sSKWwKKJE2ciKl3vWoaBkAyY//Q3LBVJ+rEilcCiiRdgh160vshG80bideu4/0huU+ViRSuBRQIu0UHTyK6PDPexvJBIlJt+EmE/4WJVKAFFAiu6F0zPmE+xkAMuuXk3j9AdztV+4VkT2igBLZDU4oTOykb+GUeQ1mU/PfJfnpZJ+rEiksCiiR3RQq705s/NWNix7WvfMo6VXzfa5KpHAooESynOx6UA2PbRHpZygdc4G3kUkTnzSBTHxTR5QnUnQUUCJZpaPPIdxvGKWjz2nX66LDTyUyaBQAbu06Ei/fhZtRU1mRPeUU0IXdQcDCtWu3kMkUzPcknYRbv5XaJ2/E3VgDQMnIs9oddNL5VVd3cfyuoZBoBCWSA05JuXcTb7gEgPoPJpJaPNPnqkQ6NwWUSI6Eew4gduyljdvxV+4ms3m1jxWJdG4KKJEcig49mugB47yNulrikybgpur9LUqkk1JAieRY6VFfIlQ9GIDMms+oe+dvPlck0jkpoERyzAlHKRt/NZRWAJCc9SrJOW/5XJVI56OAEukAoS7VlJ14JeBN6kq88SDptUv8LUqkk1FAiXSQyIDhlIw809tI1xOfdBtu/VZ/ixLpRBRQIh2oZORZhPc+GAB3Uw2JV+9RU1mRNlJAiXQgJxQiduKVOBU9AUh99gHJD1/wuSqRzkEBJdLBQrEu3k28oTAAdVMfJ7XC+lyVSPDlrdWRMWYo8CBQBawFLrHWzt3umN7A/cAAIAq8AvyXtTbVho8YhFodSYDVfzKZurceAsAp60b5eTcSKu/uc1WSS2p1lFv5HEHdCUyw1g4FJgB3tXDM/wKzrLXDgeHAKODc/JUo0nGiB55IZMgRALjxjSReuh0305bfvUSKU14CKjsyGgk8mt31KDDSGFO93aEu0MUYEwJKgRJgWT5qFOlojuMQO/YyQj32AiC9cg51U//pc1UiwRXJ0+cMAJZZa9MA1tq0MWZ5dn/TZmU3AU8AK4AK4DZrbbvucKyqqsxNxSIdogv1F/6QZff9ALc+QfLDF+i5/yFUDDvC78JEAidfAdVWFwAfAicBXYDnjTHnW2vb/GumrkFJ8HWl9LjLSbw0AYCap/9MRbiKUPe+Ptcle6q6uovfJRSUfF2DWgLsZYwJA2Qf+2f3N3Ut8Ii1NmOt3QhMBMblqUaRvInuezjRQ07xNpIJ4i/dhpuq87cokYDJS0BZa1cBM4CLs7suBqZba7dfi2AhcCqAMaYEGA98nI8aRfKtdOwFhPvsD0Bm3VISbzyom3hFmsjnLL6rgGuNMXPwRkpXARhjnjPGjM4e8x3gWGPMR3iBNgf4Sx5rFMkbJxQhNv5qnLKuAKTmvk1y1qv+FiUSIFryXcRnqeWziD/7W3BdCEUoP+t6wtnlOqRz0X1QuaVOEiI+i/Q/gJLDz/c2MimvqWxii79FiQSAAkokAEpGnEZkn8MAcLesJf7KXbhuxueqRPylgBIJAMdxiJ3wDZwu3r3r6SUfUf/BMz5XJeIvBZRIQDilFV5T2XAUgPr3nyK1VJNYpXgpoEQCJNxrH2LHXJLdcklMvpPMlrW+1iTiFwWUSMBEzbFEhx0HgFu3hfikCbjppM9VieSfAkokgEqP+gqhXvsAkFm9gLp3/u5zRSL5p4ASCSAnUkLZ+G9DSTkAyU8nk5z3js9VieSXAkokoEJdqykb983G7cTr95Nep9VnpHgooEQCLLLPoZQcerq3kaonPunPuPVxf4sSyRMFlEjAlYw+l/BeBwLgblxJ4rV71VRWioICSiTgnFCI2IlX4VT0ACC1cBrJj//jc1UiHU8BJdIJhMq6Ujb+GnDCANS9+w9SK+f4XJVIx1JAiXQS4T5DKD3yIm/DTZN46XYyWzf6W5RIB1JAiXQi0YPGE9l3DADu1g0kXr4TN5P2uSqRjqGAEulEHMchdvzXCXXvB0B6+Szqp/3L56pEOoYCSqSTcaIxYid/GyKlANTPeJbUZ9N9rkok9xRQIp1QuMdexI67rHE7/urdZDat8rEikdxTQIl0UtEhRxA9aLy3UR/3buJN1ftblEgOKaBEOrHSIy4i1Hs/ADJrl5B48yGfKxLJHQWUSCfmhCOUjb8GJ9YFgNScN6if/ZrPVYnkhgJKpJMLVfYkduJVgANA3VsPkV7zma81ieSCAkqkAET2PoiS0ed4G+mUt8hhXa2/RYnsIQWUSIEoOex0wgNHAOBuXk38lbtx3YzPVYnsPgWUSIFwnBBl476J06UXAOnFM6mf8azPVYnsPgWUSAFxSiu8lXjDEQDqp/2L1LJPfa5KZPcooEQKTLh6EKVHf9XbcF0Sk+8gs2Wdv0WJ7AYFlEgBiprjiAw9BgA3sZn45Ntx0ymfqxJpHwWUSAFyHIfYMV8lVDUAgEzNPOqmPOZzVSLto4ASKVBOpNS7HhUtAyD58SSS86f4XJVI2ymgRApYqFsfYuOuaNxOvHYf6fXLfaxIpO0UUCIFLjpoJCUjTvM2UnUkJt2Gm0z4W5RIGyigRIpAyeHnEe43DIDMhuUkXr8f13V9rkpk5xRQIkXACYWJnXQVTnl3AFLzp5D85CWfqxLZOQWUSJEIlXcnNv5qcLy/9nXv/p10zTyfqxJpnQJKpIhE+g6ldOwXvY1MmvhLt5OJb/K3KJFWKKBEikz0kFOIDB4NgFu7jsTLd+Fm1FRWgkcBJVJkHMchdvzlON36ApBe9gn17z/pc1UiO1JAiRQhp6SMspO/DZESAOqnP0Nq8QyfqxJpTgElUqTCPfcmduzXGrfjr/yFzKbV/hUksh0FlEgRi+5/FNEDT/Q26mqJv3Qbbqre36JEshRQIkWu9MiLCVXvC0BmzSLq3n7E54pEPAookSLnhKOUnXwNTmklAMnZr5G0b/hclYgCSkSAUGUVsROvBBwAEm/+lfTaxf4WJUVPASUiAEQGHELJqLO8jXSS+KTbcOtq/S1KipoCSkQalYw8k/CAQwBwN60i8eo9aiorvlFAiUgjxwlRNu5KnMoqAFKLplM/83mfq5JiFdnZk8aYh4Bd/vpkrb0kZxWJiK+cWCVl469h69O/hEyK+vceJ9x7MJH+B/hdmhSZXY2g5gHzs382AmcDYWBp9rVnARs6skARyb9w730pPepL3obrkph8B5na9f4WJUVnpyMoa+2NDV8bY14EvmDttvmnxphjgJ90XHki4pfoAeNIr5xLat47uPFNJCbfQdnpP8AJ7fSfDZGcac9P2hHAu9vtmwIc2ZYXG2OGAg8CVcBa4BJr7dwWjvsiXug5eKcXx1tra9pRp4jkgOM4xI79GlvXLiGzfinplXOom/pPYkdc5HdpUiTaM0liOvBLY0wZQPbxFqCtHSbvBCZYa4cCE4C7tj/AGDMa+DlwsrX2YOAYvFOLIuIDJ1rqNZWNxgBIfvgCyQXv+VyVFIv2BNTXgKOBjcaYGrzgOAa4dFcvNMb0BkYCj2Z3PQqMNMZUb3fo/wC/t9auBLDWbrTWJtpRo4jkWKh7X2InfKNxO/HavWQ2rPSxIikWbT7FZ639DDjKGDMA6A+ssNa29VbzAcAya206+15pY8zy7P6m7ZMPBBYaY14HKoF/AbdYa9t8I0ZVVWVbDxWRtqoex9pNi9k45WlIJqh/5Xb2+tqvCJXE/K5MCli7rnYaY6qAE4B+1trfGmP6AyFr7dIc1RMGhgMnAyXAC8Bi4K9tfYO1a7eQyejGQpFccw85k/Ci2aRXziG5ejFLn7yN2Lhv4jiO36UFRnV1F79LKChtPsVnjDkesMCX2TZzb3/gjja8fAmwlzEmnH2vMN4obMl2xy0G/mmtrbPWbgYmAmPaWqOIdBwnFCE2/mqcsq4ApOa9Q3LWKz5XJYWsPdeg/ghcaK09FUhl902hDQFirV2FN5ni4uyui4Hp1trtV0f7G/A5Y4xjjIkCJwEz21GjiHSgUHl3YiddDY73T0fd238jvWqBz1VJoWpPQA2y1k7Oft1wDq2etp8mvAq41hgzB7g2u40x5rns7D2AvwOrgE/xAu0T4N521CgiHSzSfxilY873NjIp4i9NIJPY7G9RUpDacw3qU2PMKdbaF5vsGw981JYXW2tnA2Nb2H9ak68zwHezf0QkoKLDP0+6Zh6pzz7A3bKWxMt3UXbqd3FCau8pudOen6brgEeMMQ8CZcaYu4AHgO93RGEiElyO4xA74Rs4XfsAkF76MfXTn96j90wtnsHWZ35FanFbb62UQtfmgLLWvguMwDvtdh+wEBhjrdVdeyJFyCkp927iDZcAUP/+RFJLPtzt96ub9iTpFZa6aU/mqkTp5Np8is8Yc6i1dgbw2w6sR0Q6kXDVAGLHXkLi1XsAl/jLd1Fx7o2EuvRq93u5yUSzR5H2nOL7jzHmE2PMDcaYwR1WkYh0KtGhxxAddoK3UVdL/KUJuOmkrzVJYWhPQPUDfgAMA2YaY94xxlybbWMkIkWs9KgvEeo1CIDM6oXUvfPozl8g0gbtuQaVttY+a639CtAH+H/A+ex4s62IFBknUkLZyddAaQUAyU9fJjn3bZ+rks6u3Qu7GGNiwOnAhcBo4I2dv0JEikGoSzVl475J/IU/AJB4/QFCVQMI9xzgc2XFwxjzfbwG3hm8JYtusNZO9Leq3deeVkenGWMexruR9jrgNWA/a+34jipORDqXyMARlIw809tI1xOfdBtufdzfooqEMWYs2YGDtXY4cBSw+9MqA6A9I6jf4y2TcZi1dn4H1SMinVzJyLNJ18wnvewT3I01JF67l9j4a9RUtuP1B9YAdQDZfqabs2v3/QFvyaMYcIe19g5jzOnAj4DjgQpgKvBFa21gQq0916AOtNbepHASkZ1xQiFiJ16JU9ETgNTCaSQ/enEXr5Ic+A/QC5hnjPmLMaahS8+PgfestWPweqdeYYwZYq39N15buR8CfwbuDVI4wS5GUMaY6621t2S//kVrx1lrf5rrwkSk8wqVdaVs/NVsfeZXkElTN+UfhKoHE+ln/C6tYFlra40xY/BO7Z0A3GaMuR84DYgZY67NHtoNGArMw1skdiawHLgs70Xvwq5O8e3d5OvWrnRq8SUR2UG4zxBKj7iYurcfBjdDYvIdlJ/7c0Ll3f0urWBl+5m+CbxpjHkRr+tPPXCRtfbjFl7SD4jihVYJEKi7pHcaUNbabzX5OnDpKiLBFj3oJK+p7Px3cbduIDH5Dsq+8AOcUNjv0gqOMcYATrYxN8BhwCK8lSH+2xhzpbU2Y4wZijdiiuMtBns13qjr18B38l9569ozi+8pY8wF2WnmIiK75DgOseO+Rqh7fwDSKyz17z3hc1UFqxK41xgzyxgzAzgPb2mjm/EmTsw0xnwM3IU3WvoR8JG19lng58CxxpiTfKm8FY7rtu0MnTHmf/AWGjTAU3iLC07KDimDYBCwUEu+iwRPesNytj75C8j22Yt97lqig0Y1O2bLYz/E3ViD060PlRf+xo8y91h1dRdNVcyh9szi+0N2FshoYAHeCrvLjTF/6qjiRKQwhLv3J3bc1xu3E6/cQ2ZjjY8VSWfQ7tXFrLVzrbU3Ahfh3QR2Tc6rEpGCE91vDNGDT/Y2knHvJt5Unb9FSaC1K6CMMftlu5l/AkwC5uLd5CUiskulYy8k1GcIAJl1S0i8+VfaeplBik97Jkm8B3yAN3/+e0B/a+011to3O6o4ESksTjhC2fhrcGJdAEjNeYvk7Nd8rkqCqk2tjowxDvA4cKe1dlPHliQihSxU0YPYSd8i/tzvwHWpe+thQt36QDJ7uk8jKslq0wjKWusCPwO2dGw5IlIMInsdSMno87yNTIr4v3+Du3UDAO6mVdRN/SduJigThMUv7WkWOx3v9N7sXR0oIrIrJYeeRnL2a7ibV+/wXP2Mf+Nm0sSOuNCHyvLrjOsmRoAzgLOBMuAd4MFnbj1rna+FNWGM+TlQaa39Xj4/tz0B9SrwgjHmAbxFChvH4dba+3JblogUOje+CXfzmlafT348iZIRnydU1jWPVeXXGddN7Ao8CxzTZPcFwPVnXDfx88/cetZ7/lQWDO0JqKOBhew4a8/F6/ckItJm6WWfstNWnpkU6WWfEhpyRN5q8sEfaR5ODaqAp8+4buLgZ249a4/64xljXOAGvBFaFXAFMB44Fa8P3wXW2lnGmL54Syp1xVuW41lr7Q9aec8f4nWqiADLgCustSv3pM6WtDmgrLXjcv3hIlLEMuncHNNJnXHdxCrgyzs5pC9wPvBwDj5ug7X2cGPMBcBEvOaxPzbG/AC4HvgKsAE4w1q7xRgTBV40xpxqrX2h6RsZY74C7Accke3t9y3g1l18L7ulzQFljGl1QkWA2h2JSCcR3uXSGw7hfkPzUotPDF5PvJ0ZnqPPeiz7+AHgZteCAngfODf7dRj4nTHmKLzl4vsChwLNAgo4E6+j0Adef1oiwMYc1dlMe07xpWh9PK7WxCLSLqGuvYnsO4bUgqktPh8ZcgShLtV5riqv1rfhmA05+qyG04RpsivuNtluyIHvAj2AsdbahDHmbrxTfdtzgJvzMfegPZ0kBgP7NvlzNPAM8M0OqEtEikDs+MuJbNc0FiAyeDSx476W/4LyazZeu7ideWwXz+dSd2BFNpz2As5q5bingauNMT0AjDGlxpgRHVFQe65BLdpu1yJjzKXAe8C9Oa1KRIqCEy2l7HPXkl631LsXKrEZp7KKspO/7XdpHe6ZW89yz7hu4n8DL9Lyqb7fPXPrWfPzWNKfgMezS3IsBSa3dJC19iFjTC/gtewpvhBwO97KvDnV5uU2WmKMGQB8aK3tkbuSdtsgtNyGSKdVrMttnHHdxKOAm4ATs7sWAL8H7nzm1rOK+h+z9kySeIjm16DKgePIzQwTEZGi9MytZ70NnHTGdRO7AaXA6mIPpgbtmSQxb7vtLXi9+V7KYT0iIkXpmVvP6pCZcJ3ZLgPKGDMKqMuuAYUxpjfezWUHAe8YY9611qpHn4iI5FRbZvH9EW8+fIO7gSHZx4OB33ZAXSIiUuTaElAHAG8AGGO6A18AvmKtnQBcjNfkUEREJKfaElARoD779RF48+TnAFhrl+DNnZc9NHPeGn7zyAfMnNd680wRkWLSlkkSn+B11/0HcBHQOCkiezOXLuzlwFNvLGRRzWYS9WlGDOnldzkikkcLbjnPwbtVpgyYv+/1T9Tt/BXFoS0jqB8Cdxlj1uGd3mt6g8KFwFsdUVixSdSnmj2KSHFYcMt5nwdm4N3/9AmwdMEt5/1kwS3n5aSFnDHmbGPMLGPMdJO9s7ajGGMeMMbk7C7rXY6grLVvGmMG4i1WOMdau7nJ088Cf89VMSIixWTBLeedjtddvOlgoRfwC2AAuWkldyXwU2vt4zl4r7xq031Q2VB6v4X9NucViYgUgexpvVtp/UzWFQtuOe+P+17/xKe7+xnGmD8Ax3pfmquBHwG/xlvzCbzgetYYMwiYBvwFb52oMrzlM64CxgJx4Cxr7UpjzCF4rY0q8JrJ3m2t/WMLn10C3IK3hmApXt/Bb7XntqT2NIsVEZHcORjvzNTOnLcnH2Ct/R+84Pkv4BzgTuBL1tpRwOl4l28aJrpVAW9aaw/D6686GZhgrR2ON0BpOHX3GTDeWjsSGAN80xhzQAsf/wNgo7V2jLV2BLAc+HF76m9PJwkREcmdyhwd01ZH4a1K8XyTS1Eu3n2ta4At1tpns/s/AJZaa2dkt98HTs5+XQ7cke1gngH6AyOAWdt93plAV2PM+dntUtrZUFYBJSLij0/xTp2V7eSYaTn8PAevufdx2z+RPcW3/TpRie22G/Lil8BK4GvW2pQx5j+0vm7U1dbal3e3YJ3iExHxwb7XP7ER2Nmif5/hTaDIlbeB/Y0x4xp2GGMON8a0twN7d2BJNpwOxrvG1ZKnge8aY8qyn9WllVOBrVJAiYj45/vAv1vYvxj4wr7XP1HfwnO7xVq7Hu+028+MMTONMbOAn+ONdNrjZuAKY8yH2de/3spxv8Y7pfde9tg38ToTtdkerQcVMIPoxOtB/fiud6hZH6dPjzJ+deWRfpcjknfFuh5UdjbfMXiTGGLAu8A/9r3+icROX1gEdA1KRMRH+17/hIvX7/QNv2sJGp3iExGRQFJAiYhIICmgRCQQnGis2aPv35xgAAAUM0lEQVSIAkpEAqF09DmE+w2jdPQ5fpciAZG3SRLGmKHAg3jtNNYCl1hr57ZyrAGmA7dba7+XrxpFxD+RgYcSGXio32VIgORzBHUnXl+nocAE4K6WDjLGhLPPPZXH2kREJGDyElDGmN7ASODR7K5HgZHGmOoWDv8R3o1rc/JRm4iIBFO+TvENAJZZa9MA1tq0MWZ5dv/qhoOyzQdPAcYBP9mdD6qqymVvxfwJh0ONj9XVXXyuRkTEf4G5UdcYEwXuBi7LBthuvU9n7SSRTmcaH1ev3ryLo0UkiPTLZW7l6xrUEmCv7PWlhutM/bP7G/QD9gOeM8Z8BnwHr9/T3XmqUUREAiQvIyhr7SpjzAzgYuDh7ON0a+3qJscsxlvqGABjzM+BSs3iExEpTvmcxXcVcK0xZg5wbXYbY8xzxpjReawjcLbEk8Tr0wDUpzIUUANfEZHdpm7mPnthymKefGMByVSmcd/APpVcc84hVHff2TpmIhI0u9PNXFqnThI+euujFfzjlXnNwglgcc0Wbv37DJKptE+ViYj4TwHlE9d1+ffbn7X6/KoNcabOWpW/gkREAkYB5ZP1m+uoWR/f6TGzF63PUzUiIsGjgPJJKLTrU9WZXR4hIlK4FFA+6VZRwt7VO+968cmCtczSKEpEipQCyieO43D2sYN3esymrUl+9+h0Hnh+NlsTqTxVJiISDAooH40cWs03Tj+ALuXRZvuHDezB8P2qGrdfn7mcG+55lxlz1+S7RBER3+g+qABIpjL88M632bClnqpuMX73raMAmDZ7FQ9PmsOm2vrGY8ce2IeLx+9P1/ISv8oVkVboPqjc0ggqAKKREKXRMACRJpMnRg/rzc3fGMvRB/dt3Dfl0xpu+MsU3v10pTpOiEhBU0AFXGVZlMtPP5DvfnEEVV1LAa810t1Pf8qf/vkh6zYlfK5QRKRjKKA6iYP3reIXl4/lpJF7N+6bOX8tP7l3Cq/OWKbRlIgUHAVUJ1JWGuHLnxvKj748kj49ywGI16X56wuW3z06nVXrt/pcoYhI7iigOqGhA7rzi68fzmlH7EPI8a5ZzV68gZ/eO5UXpy7udJNERERaooDqpKKRMOefsB8/uXQ0A3t7N/zWpzI89vI8bnnofZau3uJzhSIie0YB1cnt07cLN1w6mnOP25dI2BtNLVyxiRvvf4+Jby4klVbDJBHpnBRQBSASDnH6UYP4+WVj2G+vrgCkMy4T31zILx54j4UrNvlcoYhI+ymgCkj/XhX8+MujuHj8/pREvf+1S1fXcvNfp/GPl+dRl9T6UiLSeSigCkwo5HDy6AHcdPlYDhzUAwDXhRemLuZn903FLlbzWRHpHBRQBaq6exnXXXgol502jPLSCACr1sf5zd+m89cXLfE6NZ8VkWBTQBUwx3E4dnh/br5iLIft36tx/6vTl3HDPVP4cL6az4pIcCmgikD3ylK+fe4hfOvsg+ma7Zy+fnMdf3z8Q+5+5hM2b63fxTuIiOSfAqpIOI7D4cN6c/MVR3DkQduaz777SQ033DOFqbNq1C5JRAJFAVVkKsuiXHHGgXznghH0zDaf3bw1yZ0TP+G2f33E+s11PlcoIuJRQBWp4ftVcdPlYxl32F6N+6bPXcMN90zh9ZnLNZoSEd8poIpYWWmEr55i+OGXDqNPjzIA4nUpHnh+Nr//+wxWbYj7XKGIFDMFlGAG9uDGr4/h82MHku09y6xF6/npvVP4z3tL1HxWRHyhgBIASqJhLhg3hBsuGc3e1dnms8kMf588l1898j7L1tT6XKGIFBsFVEDESiLNHv0yuF9Xfvq10Zxz7ODG5rPzl23ixvun8sxbaj4rIvnjFNDF8EHAwrVrt3TKU1Iz563hxamLOWXMQEYM6bXrF+TBsjW13P/cLBYs39Zsdu/qSr7+hWEM6tvVx8pEgqm6uovjdw2FRAElO5XJuLz0/lL+9fp86pPe6CnkOJwydgBnHT2YkmjY5wpFgkMBlVsKKGmTVRviPPj8bGYt2tZstk+PMi477QCGDujuY2UiwaGAyi0FlLSZ67q88eEKHnt5LvG6bUt3jBu5F+cfvx9lpf5ePxPxmwIqtxRQ0m7rN9fx0IuWGfO2NZvt2bWUS08dxiH7VvlYmYi/FFC5pYCS3eK6Lu/NXsUjk+aweWuycf9RB/flopP2p7Is6mN1Iv5QQOWWAkr2yOat9Tw6eS7vflLTuK9reZSvfM4welhvHysTyT8FVG4poCQnZs5bw19ftM2azY4aWs2XPzeU7pWlPlYmkj8KqNxSQEnOxOtSPP7KPF6dsbxxX3lphAtPGsIxh/TDcfR3VwqbAiq3FFCSc7MXreeB52c3azZ70KAeXHrqMHp1L/OxMpGOpYDKLQWUdIi6ZJqJbyzkxfcW0/AjVhoNc97x+3LiqL0JaTQlBUgBlVsKKOlQC5Zv4v7nZ7Fs9bZms0P26sZlpw2jX1WFj5WJ5J4CKrcUUNLhUukMz76ziH+//Rnp7P+bSNjhzKMHc+rYgUTC6lkshUEBlVsKKMmbpau3cP9zs1m4Ylvz2YG9K7nstAPYp28XHysTyQ0FVG4poCSvMhmXSdOW8OTrC6hPbWs++/kjBnLm0YOIRtR8VjovBVRuKaDEFzXrt/Lg87OZvXhD476+Pcu57LRh7L+3P81nZ85bwwtTFnPq2OAseSKdiwIqt3TyX3zRp0c537v4MC451VBW6o2aVq7byq8f/oBHJs0hUZ/Ke01PvbEQu2QDT72xMO+fLSI7UkCJb0KOwwmH7sVNl49lxH5ek1kXmPz+Un5yz1Q+Xrg2r/U0hKIf4SgiO1JAie96do3xX+cP55tnHtjYZHbtpgT/99hM7n32U2oTyV28g4gUIgWUBILjOBxxYF9uvmIsYw/s07j/rY9WcsNfpvC+XeVjdSLiBwWUBErX8hKuPPMg/uu84XSvLAFgY209E578mAlPfsTGLXW7eAcRKRQKKAmkQ/fvxc3fOILjRvRv3Pe+Xc0N90zhrY9WUECzT0WkFXlbo9sYMxR4EKgC1gKXWGvnbnfMT4CLgDSQBP7XWvtivmqUYCmPRfja54cx9oDePPDCbFZvSFCbSHHvs7OYMquGS08ZRlW3mN9likgHyecI6k5ggrV2KDABuKuFY6YCh1trhwNfBx4zxqj9dZE7YFBPfvH1sXzu8AE09Jj9eME6brh3CpPfX0pGoymRgpSXgDLG9AZGAo9mdz0KjDTGVDc9zlr7orV2a3bzQ8DBG3FJkSstCXPRSfvzv18dRf9eXpPZuvo0j0yaw28e+YCV67bu4h1EpLPJ1ym+AcAya20awFqbNsYsz+5f3cprLgHmW2uXtueDqqoq96hQCbbq6i6MOqgf/3hpLo9PnkM64zJ36UZ+dt9UvnTKMM45fj/Cu9l8tuF14XCI6mr1BhTxW96uQbWHMeZ44Cbg5Pa+Vq2OisPnRu3FAQO6cf9zs/hs5WaSqQwPPvspr05bwmWnDWNgn/YHTDqdaXxcvXpzrkuWIqBfbHIrX9eglgB7GWPCANnH/tn9zRhjjgQeBs621to81Sed0IDelVx/ySi+OG4I0Yj3o7yoZjM3PTiNf70+n2S2Ga2IdE55CShr7SpgBnBxdtfFwHRrbbPTe8aYw4HHgPOttR/kozbp3MKhEKeOHcgvvj6GoQO8JrPpjMu/317Ez++fyrxlG32uUER2Vz5n8V0FXGuMmQNcm93GGPOcMWZ09pjbgTLgLmPMjOyfQ/JYo3RSfXqW84MvHcZXTzHESrzmsyvWbuVXD73P316aQ1192ucKRaS9tNyGFJx1mxI8+ILlowXbms326hbj0s8P46BBPVt93Y/veoea9XH69CjjV1cemY9SpcBouY3cUicJKTg9u8b4zgXDueKMbc1n12xMcOvfZ3Dfc7PYquazIp2CAkoKkuM4HHlQX27+xlgOH9a7cf+bH67g+numMH1Oa3c3iEhQKKCkoHWtKOFbZx/Mt889hG4NzWe31PPnf33EHU99zKbaehat3MyDL8xm3WavEW1dMq3uFD6YOW8Nv3nkA2bOW+N3KRIQugYlRWNrIsljL8/jjQ9XNO4riYSob2E6+mhTzZVnHUQ4pN/h8uXG+99jUc1m9unThZ9ddrjf5ewWXYPKLf3tk6JRHoty2WkHcN1Fh9Ir22S2pXACmGZXM3lau5qYyB7SisayvUB2khDpSAcN6slNl4/l5r9OY9ma2laPe+adz4iVRigvjVARi1BRFqU8FqEiFiVWEsZx9MuySEdSQElRKi0JUxHb+Y9/bTzFA8/PbvG5kONkw6p5cDU8VsQilMciVDbdlz2uJBJSuIm0gQJKilaX8pLdfm3GddkST7IlnoT18Xa9NhJ2KM+GWEuhVlHW8PW2Yxq2G1o6iRQDBZQUrSMO6sv7O5luPnJoL448qC+1iRRbEylqE8ns195jbTzZuH9rIkVbp+ak0i6bauvZVFvf7ppLoqGWQy22XajtMKqLBHrCRzKVbuydqClO0kABJUXrsKG9GDm0mg9aCKne3cu45NRhdG3jKCvjuiTqUo1htiWxLby2BVmTcGvyfLyu7W2Y6pMZ6pN1rM9OiW+PWPa0ZrOAK9sWajuM6rIjubLSCKEOOiXpui4vTF3M8+8u9kajwOoNcV6YsphTxgzQqdAip2nmUtRS6QwvTVvKK9OXsnpDAoCy0gi/+uYRdK3Y/VOA7ZHOZIjXpamNJ3cIscbteNNQ2/Z1XbLjeww6QHl2pNbSaceKsmyolTY9Pdm2ySRPvbGAp9/6rMXnzj52MGcePbhjvqkOomnmuaURlBS1SNjrhn7q2IH86K53WLU+TtfyaN7CCbyO7JVloca2TO2RSmeahdr2YdYwkmt6irI2e0wq3bblSFzIvi4FJNpVX2uTSSpiEaKREJPe22HFnUbPvrOIk0btTUWs/f9dpDAooESyOuOvvpFwiG4VJXTbjUCtT6ZbOe3Y5PpaXfZxu9Fduo1nKfZkMkkyleGThesYc0Cfdn9vUhgUUCJFqiQapiQapkeX0na9znVd6pLpZmHW2vW1HSaV1KVoz1UFLTpZ3BRQItIujuMQK4kQK4nQs2v7XutNJkmzNZHks5Wbuf2pj3d6/H57dduDSqWzC+68UxEpOA3XpHp1L2P0sN4M36+q1WMP278XfXuW57E6CRoFlIj45oozDmTYwO477B82sDuXf+EAHyqSIFFAiYhvKmJRvn/xYfzwS4c1tp7q0aWU7198GOWavVf0FFAi4ivHcTADezROs1evQmmggBIRkUBSQImISCApoEREJJAUUCIiEkgKKBEJhFhJpNmjiAJKRALh7GMHM2xgd84+tnN1MJeOo19VRCQQRgzpxYghvfwuQwJEIyiRLJ1iEgkWBZRIlk4xiQSLVtQVEckRraibWxpBiYhIICmgREQkkBRQIiISSAooEREJJAWUiIgEkgJKREQCSQElIiKBpIASEZFAUkCJiEggFVLTsTBAKKQbuUXEN4OApUDK5zoKQiEFVD+AHj0q/K5DRIrXQmAw8JnPdRSEQurFVwocDqwA0j7XIiLFSyOoHCmkgBIRkQKiSRIiIhJICigREQkkBZSIiASSAkpERAJJASUiIoGkgBIRkUBSQImISCApoEREJJAKqdVRp2WM+T1wHl4fr0OstR/7W1FxMcZUAQ8B+wH1wFzgSmvtal8LKyLGmKfwWgRlgC3AtdbaGf5WJX7TCCoYngKOAxb5XUiRcoHfWmuNtfYQYD7wa59rKjaXWmtHWGsPA34P3Od3QeI/jaACwFr7JoAxxu9SipK1dh3wapNd7wLf8qea4mSt3dhksxveSEqKnAJKpAljTAgvnJ72u5ZiY4y5B/gc4ACn+lyOBIBO8Yk092e8ayC3+V1IsbHWfsNaOxD4X+B3ftcj/lNAiWRlJ6vsD1xordUpJp9Yax8CxmUnr0gRU0CJAMaYXwKjgLOttXV+11NMjDGVxpgBTbbPANZl/0gR03pQAWCM+RNwLtAXWAOstdYe5G9VxcMYcxDwMTAHiGd3L7TWnuNfVcXDGNMHmAhU4C02ug74nrX2A18LE98poEREJJB0ik9ERAJJASUiIoGkgBIRkUBSQImISCApoEREJJAUUFKUjDEnGGOW+l2HiLROvfikIBhjPgP64N1HUws8D3zbWrvFx7JEZA9oBCWF5AxrbSUwEhgN3OBzPSKyBzSCkoJjrV1mjHkeONgY0xO4FTgFKANes9aevf1rjDE/Aq4AegNLgOuttU9mnxsC3AscCiSBydbaC40xDvB/wJeBGN56XhdrwUmR3NAISgpOtq/bacB0vJVyy4GD8MLnD628bD5wLN5aRDcCDxtj+mWfuwn4D9AD2Buv4zl4S0McBwzNvu6LwNocfzsiRUsjKCkkTxljUsBG4FngdmAZUGWtXZ895rWWXmitfbzJ5mPGmB8DY/B6xCWBfYD+1tqlwJvZ45JAF2AYMNVaOyvH349IUVNASSE521r7UsOGMWYMsK5JOLXKGHMJ8F1gUHZXJdAr+/UP8EZRU40x64FbrbX3WWtfNsbcBkwA9jHG/AuvyemmnH1HIkVMp/ikkC0Behpjuu/sIGPMPsBfgG/jjba643U3dwCstSuttVdYa/sDVwK3Z69LYa39k7V2FHAg3qm+73fYdyNSZDSCkoJlrV2RnSxxuzHmGryVco+01r6+3aEVgAusBjDGXAYc3PCkMeYC4J3s6b312WMzxpjD8X7J+wBvansC0EKHIjmiEZQUuq/iXSuaDawCvrP9AdbaT/Fm+r0D1ACHAG81OeRwYIoxZgvwNPDf1toFQFe8kdd6vBl8a9FS5SI5o/WgREQkkDSCEhGRQFJAiYhIICmgREQkkBRQIiISSAooEREJJAWUiIgEkgJKREQCSQElIiKB9P8Be0n7xlXbgZcAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.catplot('Pclass','Survived',hue='Sex', kind='point', data=df_train);"
]
},
{
"cell_type": "markdown",
"metadata": {
"_cell_guid": "8c90fa09-97fc-4143-b364-ff0dabd43292",
"_uuid": "f042a3bdb18e289edfd62688d308f6c8f6bcd27e",
"collapsed": true
},
"source": [
"**Embarked : Survival rate lowest for S and highest for C**"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"_cell_guid": "5dc3dccf-9b61-424e-b251-56ce33d1e1b4",
"_uuid": "59a813d6b0bf1d1427475ebf92d5791a300f34a8"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABEEAAAFgCAYAAABUqWfgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3X2UZXdZJ/pvvyTdIQkxdBoUyQsKeZxhcq8keskwwRkcBxw04guiCQkggxpRRB0NiqBR0MkK6CASJxmil5eQ6EQWARlnePEuBjOIVwO5CuhDdEjoQK7pdGLoIJ2YVM0fZzephO5One6qc6prfz5rnVW192+/PNXr5DlV3/z23hsWFxcDAAAAsN5tnHcBAAAAALMgBAEAAABGQQgCAAAAjIIQBAAAABgFIQgAAAAwCkIQAAAAYBSEIJCkqt5cVa9ZweNdVFVXrtCxbqqqb1mJYwHMm34LAMzT5nkXAAerqm5K8pgk9y9Z/ebu/rG5FHQYqaonJfmPSb4hkzD0b5O8qrv/cK6FAWuSfntoquqZSX4+yZOT7EnyySS/1t3vnmthwLpWVW9Ockt3v3KFjndRkid093krcKybkry4uz9wqMeCaQlBONydvdaaZ1UdDv9d/UGS/5Tk24flb0yyYX7lAIcB/fYgVNVzkvxOkp9KcnaS3UmeluS8JEIQ4EGEzoemqr49yS8keVImofN/S/Ly7v7sXAtjTVnzvzzAwaiqFyb5wST/b5IfSHJHJr9wnprk1Um2JPmZ7n7Lkt1OqKr3JzkzyUeTPL+7bx6O9xtJvjvJcUluTPIT3f3Hw9hFSf5ZJo32OzL5RXdpLUckeWuSI5Ock+S+JBcO9X1Fkj9KckF33zFsf36S1yQ5Jsmvr9A/ydJ6Tkjy+CRv6u57h9X/c6XPA4yDfrt/VbVhOO6ru/uKJUP/Y3gB7IvQ+SAsCZ0vSPLOTD5HfjXJH1fV6d399/Osj7Vjzb+Z4RA8JckVSbYl+aUkv5vJDIgnJPmXSd5RVe/o7ruH7Z+X5NuS/GmSS5K8PclZw9ifJfnlJHcleVmSa6rqlO7eM4w/O8n3Jnl+Jr/wvzxJquqoJL+fZGeS87r7/qp6WZLvHGrYmeQNSS5Nck5V/dNMZmg8a6jjPyR53P5+wKr62SQ/u7/x7v6KfazeleRvklxZVVck+ZPu/rv9HQNgGfTbfffbSnLiUBfAIRE6798QOv9aktd091XD6i9W1YuT/EUmnye/tNLn5fAkBOFwd21V3bdk+We6+03D95/u7v87Sarq9zK5HvuXu/ueJO+rqnsz+QX9hmH7/9rdHxq2//kkd1XVid29o7uX3nTv16rqlZn8cvv/Dev+pLuvHb7/YlUlySOT/Pdhm5d19+IwfkGSH+vuW4ZzXZTkM8OHw3OSvGdJHa9Kst/pj919cZKLl/Uv9cA+i1X19Ex+mf+1JI+vquuS/LvuvnGaYwGjot9O2W8zCYWS5NYp9wPYH6Hz/kPnk5Jc85BtF6rqHUmeESEIAyEIh7vvPMB0waWzG76YJA+Z8fDFTNLovXbs/aa7766qO5I8NsmOqvrpJP9uWF7M5BfuE/a17xJnJjkiyTlLfiFPkpOTvLOqFpasuz+T6z8f+5A6vlBVu/bz8x204Q+CH0uSqjoxyX/OJM3/5yt9LmDd0G+nt/d4X5Xk0yt8bGD9EjpPHzrv/ZzYV+h8a5LtUx6PdUwIAg84ce83VXVMkkcl+VxVPS2T6X3/OsknhkT5zjz4RqKL+XLvy2T63R9V1b9a8gfBjiQv6u4vuw9HVd2a5J8sWX5EHvg/iV+mql6R5BX7G+/uY/Y3tmSbHVV1aZKrH25bgBUyln7bQw3fk+R1+9sX4CGEztO7ffi6r9D5q5aMgxAElnhWVZ2VyXWWr07ykSEgOC2T6xx3Jtk8TNF75HIO2N2XVNWWPPCL+e1JLkvyK1X1gu6+uaq2J3lqd78rk6mFf7qkjl/O5BG2+zv+r2Zyw6dlq6rjk/xEkrcl+V+Z/PHxoiQfmeY4AIdgFP12uPzwp5L89vAL/zuS3J3kqZlcl/9D0xwP4CCMKXS+JZPLdy5ZcqyNmQTRnsbFl+z3wx4OE39QVXcveb3zEI51VZJfzOQmU2dkcqOpJHlvJtP+PpXk5kxuELWvZHyfuvvVSa5N8oGqelSS38ikEb+vqnZnEj48Zdj2E0l+dKjl1iR3ZtLQV9K9SU5J8oEkn0/y8ST3JHnhCp8HWF/024PQ3b+f5PsyCZs/l8n/xX1Nknet9LkA9uFZVXVWVR2ZJaFzkmPz4ND5FzJF6JxJ7/yjmjx1MHkgdD45Sapqe1U9exj7/STfvqSOhw2du/uY/b32s89ikp9O8sqqOreqtlbVV2Zy/5QTkvzmcn42xmHD4uK+Aj4AAABmqapuyuQSkvuXrH5/d3/X8HSYF3f3WcO2T0hyY3dvWLL/LUm+v7uvq6o3ZxImf20m9337aJIXdPenq2pTkjdlcr+OLyT5j0leMhz/A8M9PZ7Q3ectOfaD1lXVa5J8e5JvTvL3mcw0/uFMLn+5Lcnvdfcrhm1fkEkIc3QmT4f5wb3nOvR/tQcMwcsrkzwpyVFJ/jLJ93Z3r+R5OLwJQQAAAFhXquoZmcxY+ZbuvuHhtmc8XA4DAADAutLd70vyA5nczBW+xEwQAAAAYBTW80yQzZnc/NETcABWl34LMBv6LcAhWs8N9HFJPr1r191ZWDDbBWD79mM3PPxWB0W/BVhCvwWYnWl77nqeCQIAAADwJUIQAAAAYBSEIAAAAMAoCEEAAACAURCCAAAAAKMgBAEAAABGQQgCAAAAjIIQBAAAABgFIQgAAAAwCkIQAAAAYBSEIAAAAMAoCEEAAACAURCCAAAAAKOwed4FrGXHPnJrtm45Yt5lMGd77vnH7P78nnmXAQAAwCESghzA1i1H5NwL3z7vMpizqy55XnZHCAIAAHC4czkMAAAAMApCEAAAAGAUhCAAAADAKAhBAAAAgFEQggAAAACjIAQBAAAARkEIAgAAAIyCEAQAAAAYBSEIAAAAMApCEAAAAGAUhCAAAADAKAhBAAAAgFHYPOsTVtUvJrkoyWnd/fGqOjPJ5UmOSnJTkvO6+7Zh2/2OAQAAAExjpjNBqur0JGcmuXlY3pjkyiQ/2t2nJvlQkosfbgwAAABgWjMLQapqS5JLk/zIktVnJNnT3dcNy5clee4yxgAAAACmMsvLYX45yZXdfVNV7V13UoZZIUnS3bdX1caqetSBxrr7juWedNu2Y1amekZt+/Zj510CrHn6LcBs6LcAB28mIUhV/fMk35DkZ2dxvqV27bo7CwuLB7WvP3zZa+fO3fMuAQ7Zave0Q+m3AOuJfgswO9P23FldDvMvk/yTJJ+uqpuSPC7Je5M8IcnJezeqqhOSLAwzPT5zgDEAAACAqcwkBOnui7v7sd19SnefkuSWJM9M8tokR1XVWcOmFyS5Zvj++gOMAQAAAExlpk+HeajuXkhyfpL/VFU3ZjJj5GcfbgwAAABgWrO8MeqXDLNB9n7/4SSn7We7/Y4BAAAATGOuM0EAAAAAZkUIAgAAAIyCEAQAAAAYBSEIAAAAMApCEAAAAGAUhCAAAADAKAhBAAAAgFEQggAAAACjIAQBAAAARkEIAgAAAIyCEAQAAAAYBSEIAAAAMApCEAAAAGAUhCAAAADAKAhBAAAAgFEQggAAAACjIAQBAAAARkEIAgAAAIyCEAQAAAAYBSEIAAAAMApCEAAAAGAUhCAAAADAKAhBAAAAgFHYPKsTVdW1SR6fZCHJ3Ule2t03VNVNSfYMryR5eXe/d9jnzCSXJzkqyU1Jzuvu22ZVMwAAALB+zCwESfKC7r4rSarq2Ul+J8npw9hzuvvjSzeuqo1Jrkzywu6+rqpemeTiJC+aYc0AAADAOjGzy2H2BiCD4zKZEXIgZyTZ093XDcuXJXnuatQGAAAArH+znAmSqroiyTOSbEjyrUuG3l5VG5Jcl+QV3f33SU5KcvPeDbr79qraWFWP6u47lnvObduOWZniGbXt24+ddwmw5um3ALOh3wIcvJmGIN394iSpqvOTvDbJs5I8rbt3VNWWJK9P8sYk563UOXftujsLC4sHta8/fNlr587d8y4BDtlq97RD6bcA64l+CzA70/bcuTwdprvfluTpVbWtu3cM6+5J8ltJ/sWw2WeSnLx3n6o6IcnCNLNAAAAAAPaaSQhSVcdU1YlLls9OckeSPVV13LBuQ5LvT3LDsNn1SY6qqrOG5QuSXDOLegEAAID1Z1aXwxyd5JqqOjrJ/ZkEIGcneUySd1TVpiSbknwyyUuSpLsXhstmLq+qrRkekTujegEAAIB1ZiYhSHf/XZIz9zP85APs9+Ekp61KUQAAAMCozOWeIAAAAACzJgQBAAAARkEIAgAAAIyCEAQAAAAYBSEIAAAAMApCEAAAAGAUhCAAAADAKAhBAAAAgFEQggAAAACjIAQBAAAARkEIAgAAAIyCEAQAAAAYBSEIAAAAMApCEAAAAGAUhCAAAADAKAhBAAAAgFEQggAAAACjIAQBAAAARkEIAgAAAIyCEAQAAAAYBSEIAAAAMApCEAAAAGAUhCAAAADAKGye1Ymq6tokj0+ykOTuJC/t7huq6tQkb0myLcmuJM/v7huHffY7BgAAADCNWc4EeUF3/5/d/eQkr0vyO8P6y5Jc2t2nJrk0yeVL9jnQGAAAAMCyzSwE6e67liwel2Shqh6d5PQkVw/rr05yelVtP9DYrGoGAAAA1o+ZXQ6TJFV1RZJnJNmQ5FuTnJjks919f5J09/1V9blh/YYDjO1c7jm3bTtmZX8IRmn79mPnXQKsefotwGzotwAHb6YhSHe/OEmq6vwkr03yqtU+565dd2dhYfGg9vWHL3vt3Ll73iXAIVvtnnYo/RZgPdFvAWZn2p47l6fDdPfbkjw9yS1JvrqqNiXJ8PWxSXYMr/2NAQAAAExlJiFIVR1TVScuWT47yR1JbktyQ5JzhqFzknysu3d2937HZlEzAAAAsL7M6nKYo5NcU1VHJ7k/kwDk7O5erKoLkrylqn4hyZ1Jnr9kvwONAQAAACzbTEKQ7v67JGfuZ+yvkzxl2jEAAACAaczlniAAAAAAsyYEAQAAAEZBCAIAAACMghAEAAAAGAUhCAAAADAKQhAAAABgFIQgAAAAwCgIQQAAAIBREIIAAAAAoyAEAQAAAEZBCAIAAACMghAEAAAAGAUhCAAAADAKQhAAAABgFIQgAAAAwCgIQQAAAIBREIIAAAAAoyAEAQAAAEZBCAIAAACMghAEAAAAGAUhCAAAADAKQhAAAABgFIQgAAAAwChsnsVJqmpbkrcl+dok9ya5MckPd/fOqlpM8pdJFobNz+/uvxz2OzvJa4c6r0/yA939D7OoGQAAAFhfZjUTZDHJJd1d3X1akr9NcvGS8ad299cPr70ByDFJ3pTk7O5+QpLdSX56RvUCAAAA68xMQpDuvqO7P7hk1UeSnPwwu/3bJH/e3TcOy5cl+b5VKA8AAAAYgZlcDrNUVW1M8iNJ3r1k9QeranOS/5bkou6+J8lJSW5ess1nkpw47fm2bTvmEKqFie3bj513CbDm6bcAs6HfAhy8mYcgSX4zyd1J3jgsn9TdO6rqkZncN+RVSV65UifbtevuLCwsHtS+/vBlr507d8+7BDhkq93TDqXfAqwn+i3A7Ezbc5d9OUxV7fN+HFX1U1Mc43VJnpjk+7p7IUm6e8fw9fNJrkjyL4bNP5MHXzJzUpIdyz0XAAAAwFLT3BPkF/azflmzNqrqV5OckeQ7h8tdUlXHV9VRw/ebkzwnyQ3DLv89yTdW1ROH5QuS/Jcp6gUAAAD4koe9HKaqvnn4dlNVPT3JhiXDX5PJU1se7hhPSvJzST6V5MNVlSSfTnJJksuHx+QekeTDmVwOk+7eXVU/lOQ9VbUpyceSvGyZPxcAAADAgyznniC/PXzdmuR3lqxfTPL/J3npwx2guz+RB4cnS/0fB9jvXUnetYwaAQAAAA7oYUOQ7n58klTVW7v7+atfEgAAAMDKW/bTYZYGIMNjbpeOLaxkUQAAAAArbdkhSFWdnuTSTC5f2Tqs3pDJZTGbVr40AAAAgJWz7BAkyVuS/EGSFyX5h9UpBwAAAGB1TBOCnJzk57t7cbWKAQAAAFgtGx9+ky95Z5JnrFYhAAAAAKtpmpkgW5O8s6quy+TRuF/iqTEAAADAWjdNCPLJ4QUAAABw2JnmEbm/tJqFAAAAAKymaR6R+837G+vu/2dlygEAAABYHdNcDvPbD1nenuTIJLck+ZoVqwgAAABgFUxzOczjly5X1aYkr0yye6WLAgAAAFhp0zwi90G6+/4kv5LkwpUrBwAAAGB1HHQIMvg3SRZWohAAAACA1TTNjVF3JFlcsuoRSbYmeclKFwUAAACw0qa5Mep5D1n+QpJPdffnV7AeYB+OP+7IbD5yy7zLYM7uu/ee3HnXvfMuAwAADlvT3Bj1fyRJVW1M8pgkf9fdLoWBGdh85JZcf8mL510Gc3bGhVckEYIAAMDBWvY9Qarq2Kp6a5IvJvlski9W1Vuq6rhVqw4AAABghUxzY9TfTHJ0ktOSHDV8fUSSN6xCXQAAAAArapp7gnxrkq/p7n8Ylj9VVT+Q5G9XviwAAACAlTXNTJA9SbY/ZN0JSe5ZuXIAAAAAVsc0M0GuSPL+qvr1JDcnOTnJTyZ502oUBgAAALCSpglBfiWTG6I+L8ljk3wuySXd/durURgAAADASpomBPmNJL/b3d+yd0VVPbWqXt/dP3GgHatqW5K3JfnaTJ7veGOSH+7unVV1ZpLLM7nZ6k1Jzuvu24b99jsGAAAAMI1p7glyTpI/f8i665Ocu4x9FzOZNVLdfVomN1O9uKo2JrkyyY9296lJPpTk4iQ50BgAAADAtKYJQRaTbHrIuk3LOUZ339HdH1yy6iOZ3FPkjCR7uvu6Yf1lSZ47fH+gMQAAAICpTHM5zB8neXVVXdjdC8NMjYuG9cs27PcjSd6d5KRMbrKaJOnu26tqY1U96kBj3X3Hcs+3bdsx05QH+7R9+7HzLgGSrO33on4LMBv6LcDBmyYEeVmS9yS5tapuziSkuDXJ2VOe8zeT3J3kjUm+a8p9p7Zr191ZWFg8qH3X8h8bzNbOnbvnen7vRfY6lPfiar+PDqXfAqwn+i3A7Ezbc5d9OUx335Lk9CTPTvLaJN+Z5Ixh/bJU1euSPDHJ93X3QpLPZHJZzN7xE5IsDDM9DjQGAAAAMJVpZoJkCC4+MrymUlW/msl9Pr6tu+8ZVl+f5KiqOmu498cFSa5ZxhgAAADAVKYKQQ5WVT0pyc8l+VSSD1dVkny6u7+rqs5PcnlVbc3wGNxkErjsbwwAAABgWjMJQbr7E0k27Gfsw0lOm3YMAAAAYBrTPCIXAAAA4LAlBAEAAABGQQgCAAAAjIIQBAAAABgFIQgAAAAwCkIQAAAAYBSEIAAAAMAoCEEAAACAURCCAAAAAKMgBAEAAABGQQgCAAAAjIIQBAAAABgFIQgAAAAwCkIQAAAAYBSEIAAAAMAoCEEAAACAURCCAAAAAKMgBAEAAABGQQgCAAAAjIIQBAAAABgFIQgAAAAwCkIQAAAAYBQ2z+pEVfW6JN+T5JQkp3X3x4f1NyXZM7yS5OXd/d5h7Mwklyc5KslNSc7r7ttmVTMAAACwfsxyJsi1Sb4pyc37GHtOd3/98NobgGxMcmWSH+3uU5N8KMnFM6sWAAAAWFdmFoJ093XdvWOKXc5Isqe7rxuWL0vy3JWvDAAAABiDtXJPkLdX1V9U1W9V1VcM607Kklkj3X17ko1V9ai5VAgAAAAc1mZ2T5ADeFp376iqLUlen+SNSc5bqYNv23bMSh2KEdu+/dh5lwBJ1vZ7Ub8FmA39FuDgzT0E2XuJTHffU1W/leTdw9Bnkpy8d7uqOiHJQnffMc3xd+26OwsLiwdV21r+Y4PZ2rlz91zP773IXofyXlzt99Gh9FuA9US/BZidaXvuXC+Hqaqjq+q44fsNSb4/yQ3D8PVJjqqqs4blC5JcM/sqAQAAgPVglo/IfUOS707ylUk+UFW7kpyd5B1VtSnJpiSfTPKSJOnuhao6P8nlVbU1wyNyZ1UvAAAAsL7MLATp7h9P8uP7GHryAfb5cJLTVq0oAAAAYDTWytNhAAAAAFaVEAQAAAAYBSEIAAAAMApCEAAAAGAUhCAAAADAKAhBAAAAgFEQggAAAACjIAQBAAAARkEIAgAAAIyCEAQAAAAYBSEIAAAAMApCEAAAAGAUhCAAAADAKAhBAAAAgFEQggAAAACjIAQBAAAARkEIAgAAAIyCEAQAAAAYBSEIAAAAMApCEAAAAGAUhCAAAADAKAhBAAAAgFEQggAAAACjsHkWJ6mq1yX5niSnJDmtuz8+rD81yVuSbEuyK8nzu/vGhxsDAAAAmNasZoJcm+Sbktz8kPWXJbm0u09NcmmSy5c5BgAAADCVmYQg3X1dd+9Yuq6qHp3k9CRXD6uuTnJ6VW0/0Ngs6gUAAADWn3neE+TEJJ/t7vuTZPj6uWH9gcYAAAAApjaTe4LM07Ztx8y7BNaB7duPnXcJkGRtvxf1W4DZ0G8BDt48Q5AdSb66qjZ19/1VtSnJY4f1Gw4wNpVdu+7OwsLiQRW4lv/YYLZ27tw91/N7L7LXobwXV/t9dCj9FmA90W8BZmfanju3y2G6+7YkNyQ5Z1h1TpKPdffOA43NvlIAAABgPZhJCFJVb6iqW5I8LskHquoTw9AFSV5aVZ9K8tJhOcsYAwAAAJjKTC6H6e4fT/Lj+1j/10mesp999jsGALAajj/uyGw+csu8y2DO7rv3ntx5173zLgOAVbDub4wKALBcm4/ckusvefG8y2DOzrjwiiRCEID1aJ6PyAUAAACYGSEIAAAAMApCEAAAAGAUhCAAAADAKAhBAAAAgFEQggAAAACjIAQBAAAARkEIAgAAAIyCEAQAAAAYhc3zLgAAjn3k1mzdcsS8y2DO9tzzj9n9+T3zLgMAWMeEIADM3dYtR+TcC98+7zKYs6sueV52RwgCAKwel8MAAAAAoyAEAQAAAEZBCAIAAACMghAEAAAAGAUhCAAAADAKQhAAAABgFIQgAAAAwCgIQQAAAIBREIIAAAAAoyAEAQAAAEZBCAIAAACMwuZ5F5AkVXVTkj3DK0le3t3vraozk1ye5KgkNyU5r7tvm0eNAAAAwOFtTYQgg+d098f3LlTVxiRXJnlhd19XVa9McnGSF82rQAAAAODwtZYvhzkjyZ7uvm5YvizJc+dYDwAAAHAYW0szQd5eVRuSXJfkFUlOSnLz3sHuvr2qNlbVo7r7juUedNu2Y1a+UkZn+/Zj510CJFnb70X9lpWwlt/jjMtafi/qtwAHb62EIE/r7h1VtSXJ65O8Mck7V+LAu3bdnYWFxYPady1/+DFbO3funuv5vRfZ61Dei6v9PtJvWQn6LWvFeu23AOvNtD13TYQg3b1j+HpPVf1Wkncn+Y0kJ+/dpqpOSLIwzSwQAADgAcc+cmu2bjli3mWwBuy55x+z+/N7Hn5DWGfmHoJU1dFJNnf3XcPlMN+f5IYk1yc5qqrOGu4LckGSa+ZYKgAAHNa2bjki51749nmXwRpw1SXPy+4IQRifuYcgSR6T5B1VtSnJpiSfTPKS7l6oqvOTXF5VWzM8Ind+ZQIAAACHs7mHIN39v5I8eT9jH05y2mwrAgAAANajtfyIXAAAAIAVIwQBAAAARkEIAgAAAIyCEAQAAAAYBSEIAAAAMApCEAAAAGAUhCAAAADAKGyedwEAAACMy/HHHZnNR26ZdxnM2X333pM777p3pucUggAAADBTm4/ckusvefG8y2DOzrjwiiSzDUFcDgMAAACMghAEAAAAGAUhCAAAADAKQhAAAABgFIQgAAAAwCgIQQAAAIBREIIAAAAAoyAEAQAAAEZBCAIAAACMghAEAAAAGAUhCAAAADAKQhAAAABgFIQgAAAAwCgIQQAAAIBR2DzvAh5OVZ2a5C1JtiXZleT53X3jfKsCAAAADjeHw0yQy5Jc2t2nJrk0yeVzrgcAAAA4DK3pmSBV9egkpyf5N8Oqq5O8saq2d/fOh9l9U5Js3LjhkGo44fijD2l/1odDfR+thCMfuW3eJbAGHOJ78ZQktyS5b0WKeYB+y4rRb1kr9FvGYN49V78lWZH34SmZouduWFxcPNQTrpqqOiPJW7v7SUvWfTLJed390YfZ/awkf7ya9QEchh6f5KYVPqZ+C/Dl9FuA2Vl2z13TM0EO0Z8leVqSW5PcP+daANaKW1bhmPotwJfTbwFmZ9k9d63PBHl0kk8l2dbd91fVpkxujvrEZVwOAwAAAPAla/rGqN19W5IbkpwzrDonyccEIAAAAMC01vRMkCSpqq/L5BG5xye5M5NH5PZ8qwIAAAAON2s+BAEAAABYCWv6chgAAACAlSIEAQAAAEZBCAIAAACMghAEAAAAGAUhCAAAADAKm+ddAGtTVZ2ayaOJtyXZlcmjiW+cb1WMTVW9Lsn3JDklyWnd/fH5VgSrQ89lLdBzGQP9lrVAv50vM0HYn8uSXNrdpya5NMnlc66Hcbo2yTcluXnehcAq03NZC/RcxkC/ZS3Qb+dICMKXqapHJzk9ydXDqquTnF5V2+dXFWPU3dd194551wGrSc9lrdBzWe/0W9YK/Xa+hCDsy4lJPtvd9yfJ8PVzw3oAVpaeCzAb+i0gBAEAAADGQQjCvuxI8tVVtSlJhq+PHdYDsLL0XIDZ0G8BIQhfrrtvS3JDknOGVeck+Vh375xfVQDrk54LMBv6LZAkGxYXF+ddA2tQVX1dJo8POz7JnZk8PqznWxVjU1VvSPLdSb4yye1JdnX3k+ZbFaw8PZe1QM9lDPRb1gL9dr6EIAAAAMAouBwGAAAAGAUhCAAAADAKQhAAAABgFIQgAAAAwCgIQQAAAIBREILAjFTVZVX1qlU47kVVdeVKHxfgcKXfAsyGfsvhaPO8C4B5q6qzklyS5ElJ7k/yV0l+orv/bCXP090XrOTxAA43+i3AbOi3sH9CEEatqh6Z5D1JfiTJf0lyZJKAAVGmAAADOElEQVSnJblnyuNsSLKhuxdWvEiAdUC/BZgN/RYOTAjC2J2aJN199bD8xSTvSybT8JI8obvPG5ZPSfLpJEd0931V9cEk/zPJv0pyepKLqup7u/sb9h68qn4yydO7+zuq6s1JbunuV1bVXyX5me5+z7Dd5iS3Jnlmd3+0qs5M8utJ/mmSm5O8rLs/OGz7+CRvHs75kSS94v8qACtPvwWYDf0WDsA9QRi7TyW5v6reUlX/tqqOn3L/85P8UJJjk1yWpKrqiUvGz01y1T72uzrJOUuWn5nk9uED4quT/Nckr0nyqCQ/neQdVbV92PaqJNcnOSHJq5O8YMqaAeZBvwWYDf0WDkAIwqh19+eTnJVkMcmbkuysqndX1WOWeYg3d/cnuvu+7r4rybsyNP/hw+Lrkrx7H/tdleQ7quoRw/K5mXxwJMl5Sf6wu/+wuxe6+/1J/jzJs6rqpCTfmORV3X1Pd38oyR9M+3MDzJp+CzAb+i0cmBCE0evuv+ruF3b345L8sySPTfL6Ze6+4yHLV+WBBPzcJNd29z/s45x/k8kNqs4ePii+Iw8k6icn+d6q+vu9r0w+yL5qqO3O7v7CksPdvMxaAeZKvwWYDf0W9s89QWCJ7v7r4drGH07y0SSPWDL8lfvYZfEhy+9Psr2qvj6TD4ufPMDp9k4Z3Jjkk8MHRzL54Hlbd//gQ3eoqpOTHF9VRy/5oDhpH3UArGn6LcBs6LfwYEIQRq2qvi7JtyX5ve6+papOzKRxfyTJDUlePkzRuyvJzz3c8br7H6vqmiSvzeR6x/cfYPPfTfIrw3ZLr6u8MsmfVdUzk3wgyRFJzkzyN919c1X9eZJfqqpXJPm/kpydfU9JBFgz9FuA2dBv4cBcDsPY7U7ylCR/WlVfyOTD4eNJ/v1wreLvJfmLTG7U9J5lHvOqJN+S5Jruvm9/G3X3rUn+JMlTh/PsXb8jybOTvCLJzkyS85/JA/+9njvUfEeSX0zy1mXWBTBP+i3AbOi3cAAbFhfNMgIAAADWPzNBAAAAgFEQggAAAACjIAQBAAAARkEIAgAAAIyCEAQAAAAYBSEIAAAAMApCEAAAAGAUhCAAAADAKPxvMk9EnYf5T6kAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.catplot(x='Survived', col='Embarked', kind='count', data=df_train);"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"_cell_guid": "9c55a6cd-cb3e-490b-b272-489252eaf55e",
"_uuid": "805776505e93b1fd06f25f43e6400c6377131320"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl4XOWV5/GvNu+7LO+L5O3gBWxssxvM7oTFkBASIAmETgJMMsxMutM9nUkHSKaT7nTmmU73E7oxJASThUxMWIwxOzEYG7ABg0GG4022vFuWvC9aSjV/3CtRVmRbZavqlqp+n+fxU1V3KR3b0tGt977nPXnxeBwREUm//KgDEBHJVUrAIiIRUQIWEYmIErCISESUgEVEIqIELCISESVgEZGIKAGLiERECVhEJCJKwCIiEcmVBFwIlIaPIiIZIVcS0jCgorr6AI2NWvtCRFKjpKRnXjLH58oVsIhIxlECFhGJiBKwiEhElIBFRCKiBCwiEhElYBGRiCgBi4hERAlYRCQiSsAiIhFRAhYRiYgSsIhIRJSARUQiogQs0ooP1u7ip797jw/W7oo6FMliubIamkhSnlpcwcYd+zlSF2PymP5RhyNZSlfAIq04Utdw1KNIKigBi4hERAlYRCQiSsAiIhFRAhYRiYgSsIhIRJSARUQiogQsIhIRJWARkYgoAYuIREQJWEQkIkrAIiIRUQIWEYmIErCISESUgEVEIpK29YDNbBwwFygGqoFb3X1NK8d9EfgBkAfEgcvdfYeZFQD/Dnwm3P7P7v7LdMUvItLe0nkF/ABwv7uPA+4H5rQ8wMymA/cBV7j7JGAGsDfc/WVgDDAWOA+4z8xKUx+2iEhqpCUBm9kAYCrwWLjpMWCqmZW0OPQ7wP9x9+0A7r7X3Y+E+74EPOTuje5eBTwF3Jj66EVEUiNdQxDDgS3uHgNw95iZbQ23VyUcNwGoMLPXgR7AE8CP3T0OjAA2JhxbGZ4vItIhZVpPuALgDOAKoBPwPEGifbQ93ry4uEd7vI3kgIKC/ObHkpKeEUcj2SpdCXgTMNTMCsKr3wJgSLg9USXwuLvXArVm9jRwNkECrgRGAsvDY1teEZ9QdfUBGhvjp/DXkFwRizU2P1ZV7Y84Gukokv1lnZYxYHffCbwP3BxuuhlYEY7lJvo9cKWZ5ZlZEXAZ8EG4bx7wTTPLD8eOrwceT330IiKpkc5ZEHcBd5vZauDu8DVmtjCc/QDwB2AnsIogYZcDvwr3/QZYD6wB3gJ+5O4V6QtfRKR95cXjOfGRvBSo0BCEtNX35rzJjt2HGdi3K/9053lRhyMdRElJz7xkjlclnIhIRJSARUQiogQsIhIRJWARkYgoAYuIREQJWEQkIkrAIiIRUQIWEYmIErCISESUgEVEIqIELCISESVgEZGIKAGLiERECVhEJCJKwCIiEVECFhGJiBKwiEhElIBFRCKiBCwiEhElYBGRiCgBi4hERAlYRCQiSsAiIhFRAhYRiYgSsIhIRJSARUQiogQsIhKRwqgDEMkkqzft4aXlm6jacxiA/Yfq2b2/lr49O0ccmWQjXQGLhBav3MpPf/ce766uojEebDtU28CPHlnOjppD0QYnWUkJWATYd7CO37zgxFvZt/dgHb99aXXaY5LspwQsAry9agcNsdbSb6C8ooaafUfSGJHkgrSNAZvZOGAuUAxUA7e6+5oWx9wHfAvYGm5a4u7fDvc9AlwO7Ar3zXP3H6c+cskFNftPnFx376+lX68uaYhGckU6b8I9ANzv7r81s68Ac4BLWznuUXf/7jHe45/d/Rcpi1ByVvEJEmse6EactLu0DEGY2QBgKvBYuOkxYKqZlaTj64ucyDkTBlJYkHfM/eNL++rqV9pduq6AhwNb3D0G4O4xM9sabq9qcexNZnYlsB24193fTNj312Z2J7AO+J67f5xMEMXFPU76LyDZrQSYdU4pzy6taHV/506F9O/fg7y8YydpkWRl2jzgB4Afu3u9mV0BPG1m4929Gvg+sM3dG83sVuB5MxvVlNTborr6AI2Nx77RIrmrvqGRtz7a1vw6Py+PxnicvDyIx2HF6irmveRccubQCKOUTFdS0jOp49M1C2ITMNTMCgDCxyHh9mbuvt3d68PnL4X7J4Wvt7h7Y/j8UaAHMCxN8UuWe/W9zVSHsxzOmziIkj7BcEPfHp3JD696//DKGrbsOhhZjJJ90pKA3X0n8D5wc7jpZmCFux81/GBmQxOeTwFKAW9l3ywgBmxJaeCSEw4eqWfB0g0AFBbk87mLypr3FRXmM3tGKRBcJc95+iPqG9r8oUvkuNI5BHEXMNfM7gF2A7cCmNlC4B53fwf4iZlNI0iudcBX3X17eP5cMxsINAL7gNnu3pDG+CVLPfvmRg4eCb6VLp8+jP69ux61/5rzSlm1YTerN+1hc9VB/vjndXz5inFRhCpZJm0J2N0/Ac5pZftVCc9vO875l6coNMlh1XuP8PI7mwHo3qWQq88b+RfH5Ofncce1E7j34WUcPNLAK+9uZmJZP6aM6Z/ucCXLqBJOctqTi9fTEGsE4JrzS+nepajV4/r16sLXPnta8+uHn/2YPQdq0xKjZC8lYMlZlTv28+ZHwQhXca8uXDr1+Pd0p9kAZk4ZAsCBw/X8csEqGuOaVSMnTwlYcta8ReuaF9/5/MxRFBWe+MfhpsvGMri4GwCrNuzmhWWVKYxQsp0SsOSkjyqqKa+oAWDEwB6cM2Fgm87rXFTAnbMnNlfNPfHaeiq27UtZnJLdlIAl5zTG48z787rm11+8ZEzzXN+2GDGwJzdePAaAWGOcOfPLOVyrCTmSPCVgyTlvlW9n084DAEwa1Y8Jpf2Sfo/Lpw/jjNHFAOzcfZjfv6z1giV5SsCSU+obYjzx+nogWOGs6Uo2WXl5efzVVePp1b0TAEs+3M7bq3a0V5iSI5SAJae8/O5mavYF08fOP30Qwwec/AJNvbp34hvXjG9+/egLnzT3khNpCyVgyRkHDtfz7NKNQFBi/LkLR53ye04qK2bW2cMBOFwb48Fnyok1Np7y+0puUAKWnPHsmxs4FN4su2L68HZb3/eGmaMZOTBYBWvdln08/caGdnlfyX5KwJITdu05zCvvflpyfNW5I9rtvQsL8rnzuol0LioA4NmlG/DK3e32/pK9lIAlJzyxeH1z081rLyij2zFKjk/WoH7duOWKsQDEgQefWcWBw/Xt+jUk+ygBS9bbuH0/b5UHMxT69+6SskXVZ5w+mLPHDwCCBp5zn/uEuEqV5TiUgCWrxeNx/vjntc2vb5g5uk0lxycjLy+PW2dZc4PPd1dX8doHW09wluQyJWDJah9V1PDxxmA8tnRQT84Kr1BTpVuXIu6YPYGmwro/vKwuGnJsSsCStRob48xLuPq9McmS45M1dlgfrrsg6KpR19DIg/PL1UVDWqUELFnrzfLtbK4Krj7PGF3M+JF90/a1rzm/lHHDegOwaecB5i1ad4IzJBcpAUtWqqtPKDnOgy9cPDqtXz8/P49vXjuRbp2DpjMvv7OZlet2pTUGyXxKwJKVXn53M7v3ByXHF5w+mGElJ19yfLKKex/dReNX6qIhLSgBS9bZf6iOZ9/cAECnwnyun1F23ONTafppA7ho8uAwrnp+pS4akkAJWLLOgqUbOVwb3PS64qz2Kzk+WTdfNq65i0b5ht28uGxTpPFI5lAClqyyc89hXn0vKDnu0bWIz57zl12O061zp6O7aPzptXVs2K4uGqIELFnmidfWEWsMPuLPvqCUbl0KI44oMGJgT76Q2EXj6XKO1KmLRq5TApasUbFtH8s+3gnAgD5duThFJccn6/Lpw5g0Kui+sWP3YX7/0pqII5KoKQFLVojHjy66uOHi0RQWZNa3d35eHl+/ekJzF403PtzGso/VRSOXZdZ3qMhJ+nB9NZ9U7gGgbHAvpltJxBG1rnf3Tnzj6k+7aMx93tmlLho5SwlYOryg5Dixy/Fo8tJQcnyyJo0q5sqzmrpoNPDgM6vURSNHKQFLh7fkw23NC95MGdMfG5G+kuOTdcPM0YwYGBSHrN2yl2eWbIg2IImEErB0aLX1MZ5c/GnJ8Q1pLjk+WUWF+dw5eyKdioIfwWeWbmD1pj0RRyXppgQsHdpLyzex50AdABeeMYSh/btHHFHbDS7uzi2XjwMgHocHnynn4BF10cglSsDSYe07VMfCt4Iux52K8rkuwpLjk3XhGYOZflqwRnHNPnXRyDVpm6VuZuOAuUAxUA3c6u5rWhxzH/AtoKmNwBJ3/3a4rxvwa2Aa0AB8190XpCd6yUTPLNnAkbqg5HjWWSPo27NzxBElLy8vj699xqjYupfqfbW841UsXrmNiyYPiTo0SYN0XgE/ANzv7uOA+4E5xzjuUXefEv75dsL27wL73H0McC3wSzNL/xJXkhF27D7EohVbAOjZrYjPnNN+XY7TLeiiMbG5i8bvX17Ntmp10cgFaUnAZjYAmAo8Fm56DJhqltRkzS8RJu3wyvkd4LPtGad0HE+8tr655Pi6GWV07ZwZJccna+ywPsxu6qJR38icp8upb9DUtGyXru/a4cAWd48BuHvMzLaG26taHHuTmV0JbAfudfc3w+0jgI0Jx1WG57dZcbEumLOBb6xh+SdByfGQ/t254XJr96q3gvD9CgryKSnp2a7vfSy3z57E6s17+XhDDZU7D/Dsskq+ed3pafnaEo1Mu2x4APixu9eb2RXA02Y23t2r2+PNq6sP0NioGxwdWTwe58EnP2x+ff2MMnbXtP/H9Vissfmxqmp/u7//sdz+WePeh5dzuLaB+a+vZ9TAnpwxujhtX19OTbK/rNM1BrwJGGpmBQDh45BwezN33+7u9eHzl8L9k8LdlUDi2oIjWp4v2e+DtdXN82VHD+nFtAwtOT5Z/Xt3PaqLxsPPrmLvwboII5JUSksCdvedwPvAzeGmm4EV7n7U8IOZDU14PgUoBTzcNA+4M9w3FjgLeD6lgUtGiTU2Mm/R0V2OM7nk+GSdddoALjwj6KKxT100slo6Z0HcBdxtZquBu8PXmNlCM5seHvMTM/vIzD4AHgK+6u7bw30/A/qY2VpgAXCHu6fvs6FE7o2V29hWfQiAM8f2Z9zwPhFHlDq3XD6Ogf2CLhofVdTw0vLc+LD3wdpd/PR37/HB2txoYJq2MWB3/wQ4p5XtVyU8v+045x8EbkxNdJLpautiPLW4AgiWdUx3l+N069ypgLtmT+QfH32HWGOcxxet47QRfRk5KD03BKPy1OIKNu7Yz5G6GJPH9I86nJRTJZx0CC8sr2weC71oyhAGF3eckuOTNXJQz+ZfNLHGOA/ML6c2LDzJVk1dQnKlW4gSsGS8fQfreO7tSgA6FxVw3QWl0QaURlecNZxJZWEXjZpD/P7l1RFHJO1JCVgy3vwlFc1Xfp85ZwS9e3S8kuOTlZ+Xx9evmUCvbkUALF65rXkOtHR8SsCS0bbXHOK194OlQXp178Sss5OqvckKvbt34uvXTGh+/chzn7Brr7poZAMlYMlof0rocnzdjDK6dMq02qH0OH1UMVdMVxeNbKMELBlr7Za9vBtOFR/Ur1vz3Nhc9YWLRzNiQNhFY/NeFizdeIIzJNMpAUtGisfj/DGhy/EXMrDLcboVFeZz53WfdtGYv6RCXTQ6uON+njOz3wAnLMFx91vbLSIRYMWaXazdvBeAMcN6c+bY7J8T2hZNXTQeee4T4nF46Jly7vurs+nepSjq0OQknOiSYi2wLvyzF7geKAA2h+deB+hXsLSrhlgj8xYldjlOf8lx01hzJo45X3jGYKaHa2BU76tl7vOuLhod1HG/u9z9h03PzewF4Gp3X5ywbQbwg9SFJ7lo8cpt7KgJSo6nWQljhvZOewzXX1jGC8sqmXV25i30npeXx22fPY312/ZRs6+Wdz7ZyeKyfuqi0QElM6h2LvBWi21vA+e1XziS647UNfD0G0HJcUF+HjfMjKbkePKY/vzdLVMzthy2e5ci7rhWXTQ6umQS8AqCxXK6AoSPPyZY5UykXbywbBP7wpLjmVOGMChckEb+0rjhfbj2/FIg7KIxX100OppkEvDXgAuAvWa2g2BMeAZwzAV0RJKx90AtzzeVHHcqaG7RI8d27QWljBkWDNFU7jjAn15bd4IzJJO0OQG7+wZ3Px8YDcwGxrj7+e5ekbLoJKc8vWQDtfVByfFnzxlBr+6dIo4o8xXk53PHtROae+K9uHwTH65vlwYykgZJTaw0s2LgYmCmu1ea2RAzG5aSyCSnbKs+yOthyXHv7p2YdVbm3fzKVP17d+W2z1jz618tUBeNjqLNCdjMZhJ0p/gyn858GAv8Zwrikhzz+KJ1zV0frr+wjM6dCiKOqGM5e/xAZpye0EXjWXXR6AiSuQL+OfAld/8M0LRY59vA2e0eleSU1Zv2sGJN0AFhcHE3ZuR4yfHJuuWKsZ920Vhfw8vvbI44IjmRZBJwqbu/Ej5v+tVaR+Z1VpYOJB6PMy+h5PjGi8dQkJ/bJccnq0unQu6aPZGC/GBu2uOL1rJxu7p2ZbJkvtNXmdmsFtsuBz5s7WCRtnjXq1i3dR8QTKuaPEYt2E/FyEE9m+dON8TizMmBLhodWTIJ+G+A35nZXKCrmc0BHgH+NhWBSfZriDUeNW0qipLjbHTl2cOZGHbR2F5ziMdeUReNTJXMNLS3gMlAOfAwUAGc7e7LUxSbZLnXP9jKjt3BwuJnnTaAUUN6RRxRdsjPy+MbV4+nZ9hF4/UPtvGOumhkpDaP35rZFHd/H/iXFMYjOeJw7dElx5+fOSriiLJL7x6d+frV4/n5vJVA0EWjbHAvint3iTgySZTMEMSLZlZuZv9gZipRklPy/NuV7D9UD8DFZw5lYF+VHLe3M0b35/LpwTT9Q7UNPPRMOY2NmpqWSZJJwIOBvwNOAz4wszfN7G4zG5Ca0CRb7d5fywvLg5LjLp0KuDaHuhyn240Xj2F42EVj9ea9LFi6IdqA5CjJjAHH3P1Zd/8KMBD4N+ALwKZUBSfZ6ek3KqirDxaNuerckfTqppLjVCkqzOfO2RPpVBj8qD+9pII1m7WEd6ZIesKlmXUBrgG+BEwHFh//DJFPbdl1kMUrg5LjPj06ccVZudflON2G9O/OTZePBSAehwfnr+LQkfqIoxJIrhT5KjP7LbCTYEraa8Bod788VcFJ9vnTonU0Vch+7sJRdC5SyXE6zJw8hGnjmrpoHOHRF9RFIxMkU8X2f4DHgDPdXWveSdK8cjfvrw1Kjof2784Fp6vkOF0Su2js3l/Lso93MrGsHxeeoS4aUWpzAnb3CakMRLJb0OX409/bN14ymvx8FV2kU4+uRdxx7QT+5bEVxOPw+5fWMHZYHy16H6ETdUX+vrv/OHz+o2Md5+73tHdgkl3e8SoqtgUlx6eN6MPpo1RyHAUb0ZdrzivlmaXB2stzni7nf311GkWFWn8jCie6Ak5c6/dYd0vaNJBkZuOAuUAxUA3c6u5rjnGsEbRA+g93/2647RGCtSd2hYfNa/rlIJmtIdbInxYlXv2q5DhKs2eUsmpjDeu27GPjjv08+fp6vnjpmKjDykkn6or8XxKe336KX+sB4H53/62ZfQWYA1za8iAzKwj3PdXKe/yzu//iFOOQNFu0Ygs79wQlx2ePH0DZYJUcR6kgP587r53Ivb9exuHaGM8vq2RCWV8mlelTSbolMwviKTO7MZyGlpSwWGMqwU08wsepZlbSyuF/DywAtIJIFjh0pIH5SzYATSXH0XQ5lqP179OVW2ed1vz6lws+bm6GKumTzMDPawQrn+0ws7lmNsvM2nr+cGCLu8cgKOoAttJiWMPMJgOzgH89xvv8tZl9GP4yGJ9E7BKR597eyIHDwZzTS6cOY0CfrhFHJE3OmTCQC04fBMC+g3U8vPBjTU1Ls2RmQfwr8K9mNha4haBDRl8z+6O7/7dTDcTMioAHgdvdPRYMAx/l+8A2d280s1uB581sVFNSb4vi4h6nGqYkoXrvYV4KuzJ071LI12ZPUqPNDPPfb55GxbZFbN11kJXrqnnrkypmXxTdp5SCgvzmx5KSnpHFkS5Jd7MIb5z90MyeAn4GfBs4UQLeBAw1s4IwuRYAQzi6jHkwQcflhWHy7QPkmVkvd7/D3bckxPComf0rwU3CjW2Nvbr6gBYjSaNfL/yYuqYux+eOpPZQLVWHaiOOSlr6+tXj+clv3iXWGOfXC8oZ2q8rIwZGk/xiscbmx6qqjtfNI9lfGsl2RR4droZWDrwErAFmnug8d98JvA/cHG66GVjh7lUJx1S6e393L3X3UoIr7Ifc/Y7waw9NiGMWEAOak7Jkls1VB3jjw20A9O3ZmcunqXl2piob3Kt5OdDmLhr16qKRDsmsB7wcGAc8DXwXeMndG45/1lHuAuaa2T3AbuDW8H0XAve4+zsnOH+umQ0EGoF9wOwkv76k0eMJJcefv2gUnVRynNFmnT2CVRU1lG/YzbbqQ/zhlTXc9pnTTnyinJI2JWAzywPmAQ+4+76T+ULu/glwTivbrzrG8fe1eK01JzqIjzfuZuW6agCGlXTnvImDIo5ITiQ/L4+vXzOBe361jAOH63nt/a1MKuvHNK02m1JtGoJw9zhwL3AgteFIR9fYssvxJWNUctxB9Am7aDR55LlPqNl3JMKIsl8yY8ArCIYgRI5p+cc72RC2Qh8/si+TwuaQ0jFMHtOfy8Lx+oNHGnjwmVW6cZ1CycyCWEQw9esRgtkLzf8r7v5w+4YlHVF9g7ocZ4MvXjIar9zD5qoDrN60h2ff3MC1F6gLWSokcwV8AUEn5JnAV4Cvhn++koK4pAP684ot7NobfGQ9d+JARg7K/nmc2aiosIA7r0voovHGBtZu2RtxVNkpmUKMS1IZiHRsh47U88ySoMtxYUEen79QXY47sqH9u3PTZWN59AWnMR7nwfnl3Hf72XTrknTpgBxHMtPQjnm17O6N7ROOdFQL36rk4JFgVuBl04bRXyXHHd7MKUMor6jh3dVV7Np7hEdf+IQ7Z0/UsFI7SmYIogGoP8YfyWE1+47w0jtBUWO3zoVcfV5ptAFJu2jqotG3Z2cAln28k6UfbY84quySTAIuA0Yl/LkAeAa4IwVxSQfy5OL11DcEH4KuOb+UHl2LIo5I2kuPrkV885oJNF3z/vbF1eyoORRpTNkkmTHglmsubDSz24DlwK/aNSrpMDbtPMDSD4OrouJenbls2tATnCEdzWkj+3L1+SNZsHQjtfUxHphfzve/Oo3CAnXROFWn+i/YC2htTV/JEfMWrW2ej/i5i0ZRVKiS42w0+4IyRg8JFtLfuH0/T7y+PuKIskMyN+F+w9Hth7oBFwG/be+gpGMo31DDR+trABg+oAfnquQ4axUW5HPH7Inc19RF4+1KJpb2Y6IKbU5JMlfAa4F1CX/eBG5x97tTEZhktpYlx1+8ZAz5ujue1Ur6dOWrsz5dp/uXC1ax75C6aJyKEyZgM5tmZpPc/Yfu/kPgPwEjWM3sC2amVc5z0NurdlC5I1gaZGKZroRyxbkTBnH+pOCTzt6DdTz8rLponIq2XAH/HEj8bPkgMCZ8nAT8SwrikgxW39DIE68FY4B5wI0Xq89bLvnyFeMY0DeY571yXTWvvLs54og6rrYk4PHAYgAz6wNcDXzF3e8nWFj92tSFJ5no1fc2Ux2uknXepEGRdU+QaHTtXMidsydSEK5y98c/r2PTTi2UeDLakoALgaaBnnMJ+rKtBnD3TQStgyRHHDxSz4KlG4DgxsznVHKck8oG9+LzFzV10Wjkgac/UheNk9CWBFwO3Bg+vwl4uWlH2CZIq3TkkGff3Nhccnz59GEU9+4ScUQSlVnnjGD8yL4AbKs+xP97de0JzpCW2pKA/ycwx8xqCIYffpqw70vAklQEJpln197DvJzQ5fjq80ZGHJFEKT8vj29cM6G58nHRii28+2mbR2mDEyZgd38DGAFcAYxyd0/Y/SzwnRTFJhnmydcraIh9WnLcvYtKjnNd356d+aurErtofKwuGkloa0ui/e7+rrvvb7Hd3X1rakKTTLJx+37eKg9Kjvv37sKlU9XlWAJTxvbnsqmfdtF4SF002kzF3NImjyeUHH/+olEUFepbRz71xUtHM6ykOwC+aQ8L32q5dIy0Rj9FckIfVVRTvmE3ACMH9uTsCQMjjkgyTVFhAXfOntj8i/mpxRWsUxeNE1ICluMKSo4T+7yNVsmxtGpoSQ9uunQMEHzfzJlfzqFwxoy0TglYjuut8u3Nk+xPH1XM+FKVHMuxXXzmUM4c2x+AXXuP8NsXXaXKx6EELMdU3xBrXnZQJcfSFnl5edx+1fjmLhpvrdqhLhrHoQQsx/Tyu5up2VcLwPmnD2LYAK27JCfWo2sR30jsovHSanbsVheN1igBS6sOHK5nwdLgTnZRoUqOJTnjR/blqrBQp7YuxoPzy5vnkMunlIClVQuWbuBwbXAD5Yrpw+nXSyXHkpzrZpQxKuyiUbFtP08uVheNlpSA5S9U7TnMq+8FJcc9uhZx1bkqOZbkNXXR6NIpaFP1/FuVrNpQE3FUmUUJWP7Ck6+vpyEW3Lm+9vxSunVpc+cqkaMMSOiiEQceUheNoygBy1E2bt/PW6t2AFDSpwuXTFWXYzk1500cxHlhv8C9B+p4ZOEnmpoWStuljZmNA+YCxUA1cKu7rznGsQasAP7D3b8bbusG/BqYBjQA33X3BemIPVfE43H+mNDn7YaZo9V6XNrFV64cx7ote9m55zDvr93Fq+9t4bJpWk8knT9dDwD3u/s44H5gTmsHmVlBuO+pFru+C+xz9zEEXTh+qX507eujiho+3hiUHJcN7sn00wZEHJFki66dC7kjoYvG/3t1LZvVRSM9CdjMBgBTgcfCTY8BU82spJXD/x5YAKxusf1LhEk7vHJ+B/hsSgLOQY2NR3c5vvFidTmW9jVqSC+uv7AMCLpozJlfTl2Od9FI1xDEcGCLu8cA3D1mZlvD7c0rOJvZZGAWcAnwgxbvMQJIXGKpMjy/zYqLdcF8LC8vq2Rz1UEApo8fyIXTR0QckWSjW6+ZxJot+1i5dhdbdh3k6Tc38q16URQqAAAP/UlEQVQbJjfvLwiHvAoK8ikpyf5egxlze9vMigg6Ld8eJuh2/xrV1Qe0Tmkr6upjPLpwFQB5eTD7/JFUVe0/wVkiJ+e2Wca9W/Zy4HA9zy3dwJhBPTlzXPBhOBYWa8RijR3yezDZXxrpGgPeBAwNx3ebxnmHhNubDAZGAwvNbAPwP4BvmtmD4f5KIHFC6ogW58tJeumdTezeH5Qczzh9MMNK9ElBUqdlF42HF37c/P2Xa9KSgN19J/A+QRt7wscV7p82kHL3Snfv7+6l7l4K/Bx4yN3vCA+ZB9wJYGZjgbOA59MRfzbbf6iuefHsToX5XK+SY0mDKWP7c2k4xTHoolGek59O0zkL4i7gbjNbDdwdvsbMFprZ9Dac/zOgj5mtJbhJd0fLFkmSvGeWbuBwbXAj5MqzhzevYiWSal+8ZAxDwy4an1Tu4XsPvknVnsMAHDhS31wKn83ycmRCdClQoTHgo+3cc5jvP/gWscY4PboW8dO7zqNr54y5LSA5YHPVAe57eDmNreShYSXd+Z9fntqhmr+WlPRMauqQZtnnsCdeW0cs/IV03YwyJV9Ju9r6WKvJF2Bz1UGeWlyR5ojSSwk4R1Vs28eyj3cCMKBvV2ZOGRJxRJKLlqzcdtz9Sz/cltWfWpWAc1A8HuePr6rkWKJXc4LZD4frYhypy96xYP3U5aCV66rxTXsAKBvci+mtFiSKpF5x7+OvM929SyFdOmXv0JgScI6JNTYyb9HRXY7zVHIsEbnojOMPfc04YzD5+dn7/akEnGOWfLidrbuCkuMpY/pjI/pGHJHkspGDejavD9FS2eCezL6g9X3ZInuv7eUv1NbHeCpsC5OXB19Ql2PJALMvKGP0kN68+t5mVq6rJtYYp2fXIv7ulql0LiqIOryU0hVwDnlp+Sb2HAi6EVw0eQhD+nePOCKRwMSyftx9wxn0D8eEu3UpzPrkC0rAOWNfYslxUT7Xzcjuj3YiHYEScI54ZskGjtQFJcefOXsEfXqo5FgkakrAOWDH7kMsWrEFgF7diph1ttb6FckESsA54E+vrW8uOZ6tkmORjKEEnOXWbd3LO58EJccD+3bloskqORbJFErAWSwejzMvoeT4Cxer5Fgkk+inMYu9v3YXqzfvBWD00F5MHaeSY5FMogScpWKNjTx+VMnxGJUci2QYJeAM98HaXfz0d+/xwdpdSZ33xsptbKs+BMDUcSWMHdYnFeGJyCnQ7fAM99TiCjbu2M+RuhiTx/Rv0zm1dbHmhazz8/K4Yab6vIlkIl0BZ7imtVCTWRP1heWV7D0YlBzPnDKEwcUqORbJRErAWWbvwTqee7sSgM5FBcxWybFIxlICzjLzl1RQ21RyfM4IenfvFHFEInIsSsBZZFv1QV5bsRWAXt07Mevs4RFHJCLHowScRZ54bX1zh9nrZ5RldSsXkWygBJwl1m7ey7urqwAY1K8bF04eHHFEInIiSsBZIB6P88dFn5Yc33jxaAry9V8rkun0U5oFVqzZxdqw5HjssN5MGdu2+cIiEi0l4A6uIdayy7FKjkU6CiXgDm7xym3sqAlKjqdbCaOH9o44IhFpKyXgDuxwbQNPh12OC/LzuGGmuhyLdCRKwB3YC8sq2XeoHghKjgf26xZxRCKSDCXgDmrPgVpeWLYJgM6dCph9gUqORTqatM3UN7NxwFygGKgGbnX3NS2OuR34DtAIFAAPufu/h/vuA74FbA0PX+Lu305P9Jln/hsV1NYHJcdXnTOCXio5Fulw0nkF/ABwv7uPA+4H5rRyzJ+Aye4+BTgf+BszOyNh/6PuPiX8k7PJd1v1QV7/YBsAvXt04sqz1OVYpCNKSwI2swHAVOCxcNNjwFQzO6pHjrvvc/d4+LIbUATEkaM8vmhdc8nx5y4cRedOBRFHJCInI11DEMOBLe4eA3D3mJltDbdXJR5oZrOBfwJGA99z9w8Tdt9kZlcC24F73f3NZIIoLu5xCn+FaBSETTQLCvIpKelJ+fpqVqwJumMMH9iT6y8Z23yMSEfX8vs922Xcai3uPh+Yb2YjgKfMbKG7O8EQxo/dvd7MrgCeNrPx7l7d1veurj5AY2PHuqCOxRqbH3fu3MdDT65s3ve5C8uoqTkYVWgi7S7x+72qan/E0SQv2V8a6bp02gQMNbMCgPBxSLi9Ve5eCSwDrglfb3f3+vD5S+G5k1Icd0Z516tYt3UfAOOG92Hy6OKIIxKRU5GWBOzuO4H3gZvDTTcDK9y95fDD+ITn/YFLgA/D10MT9k0BSgFPaeAZJA48/ppKjkWySTqHIO4C5prZPcBu4FYAM1sI3OPu7wB3hGO89UAe8At3fzE8/ydmNg2IAXXAV919exrjj9Th2gb2h0UXZ502gFFDekUckYicqrQlYHf/BDinle1XJTz/znHOvy1FoWWsxnicWDhmfeBwkHyDkmN1ORbJBhl3E04Ci1duZcHSDezaewSAcNYZl5w5lAF9VXIskg2UgDPQi8sq+cOra1vd17NbUZqjEZFU0QTSDHO4toEnwxXOWvPc25Ucrm1IY0QikipKwBnmw/XV1NY3HnP/kboY5RU1aYxIRFJFCTjD1NbFTnjMkTYcIyKZTwk4w4wcdOJKmtLB2V+iKZILlIAzzIiBPTltRJ9j7h8/si/DSjremhYi8peUgDPQnbMnMnzAXybZEQN7cMfsiRFEJCKpoAScgXr36Mw9X5vOtz93Ol07F4TbOvGD26bTWwuvi2QNJeAMVZCfzzQroVe3IOF2KSqgIF//XSLZRD/RIiIRUQIWEYmIErCISESUgEVEIqIELCISESVgEZGIKAGLiERECVhEJCJKwCIiEVECFhGJiBKwiEhElIBFRCKiBCwiEhElYBGRiCgBi4hERAlYRCQiSsAiIhFRAhYRiYgSsIhIRJSARUQiUpiuL2Rm44C5QDFQDdzq7mtaHHM78B2gESgAHnL3fw/3FQD/DnwGiAP/7O6/TFf8IiLtLZ1XwA8A97v7OOB+YE4rx/wJmOzuU4Dzgb8xszPCfV8GxgBjgfOA+8ysNOVRi4ikSFoSsJkNAKYCj4WbHgOmmllJ4nHuvs/d4+HLbkARwdUuwJcIrogb3b0KeAq4MeXBi4ikSLqugIcDW9w9BhA+bg23H8XMZptZObAR+Jm7fxjuGhFua1LZ2vnZpkunwqMeRSR7ZNxPtbvPB+ab2QjgKTNb6O7eHu9dXNyjPd4mrW67ZgJPLlrH5y4eTUlJz6jDEUmpgoL85sdc+H5PVwLeBAw1swJ3j4U31IaE21vl7pVmtgy4BnCCK96RwPLwkJZXxCdUXX2Axsb4iQ/MIKUl3fnOjcEweFXV/oijEUmtWKyx+bEjfr8n+0sjLUMQ7r4TeB+4Odx0M7AiHMttZmbjE573By4BmoYg5gHfNLP8cOz4euDxVMcuIpIq6RyCuAuYa2b3ALuBWwHMbCFwj7u/A9xhZlcC9UAe8At3fzE8/zfAOUDT1LUfuXtFGuMXEWlXefF4x/pIfpJKgYqOOAQhkku+N+dNduw+zMC+XfmnO8+LOpyklZT0zEvmeFXCiYhERAlYRCQiSsAiIhFRAhYRiYgSsIhIRJSARUQiogQsIhkj19Y+UQIWkYxx/YVlnDaiD9dfWBZ1KGmhQgwRkXaiQgwRkQ5CCVhEJCJKwCIiEVECFhGJiBKwiEhElIBFRCKiBCwiEhElYBGRiCgBi4hEJDcKrqEAID8/qSIVEZFklQKbgYa2HJwrCXgwQN++3aOOQ0SyWwVQBmxoy8G5shZEZ+AsYBsQizgWEclubb4CzpUELCKScXQTTkQkIkrAIiIRUQIWEYmIErCISESUgEVEIqIELCISESVgEZGIKAGLiEQkV0qROyQzuxH4X0Ae0AV4z91viTaq7GdmRcAPgJuAIwTVk68Cf+/u9VHGlq3MrDPwE+B6oJ7g3/3H7j4v0sBSTFfAGcrMBgP/Acx29ynAeOBn0UaVM34NTASmufsZBGXsTlDSLqnxH8AwYKK7nwZ8Bfi5mV0WbVippVLkDGVmZwLPAmPc/VDU8eQKMxsLvA8Mc/fdUceTC8xsJFAOjHD3moTt/wW42d0viiy4FNMQROb6AFgGVJrZIuAN4DfuXh1pVNnvTGCNkm9anQ6sTUy+obcIhiWyloYgMpS7N7r79cDFwJ+Bq4GVZtYv0sBE2t/xFurO6o/oSsAZzt0/cvf73f0KYC9BQpbUWQGMNbO+UQeSQz4ExrRycXEusDSCeNJGCThDmdlQMzsv4fUwoIRgwWdJEXdfA8wH5phZTwAzKzCzb5hZj2ijy07uvgGYB/ynmXUBMLNJwHeAf4gwtJTTGHDmKgR+GN6gOEzwy/If3H1FtGHlhNuAe4F3zayO4N9+IVAbaVTZ7VsE472rzCwODAXOdff3ow0rtTQLQkQySjgPew4wHLjW3Y9EHFLKKAGLiEREY8AiIhFRAhYRiYgSsIhIRJSARUQiogQsOcPMHjGzf2zH97vPzH7bTu+1wcwub4/3ko5D84Al45nZBmAgwbKQTR5x9/8aSUAi7UQJWDqKa9395aiDaGJm+tmRU6ZvIumwzOxrwDcJVo27HaghWEd2HPC/Cdbv/Vt3n5twWn8ze4lgnYH3gFvdfWP4fv8GfB7oDawB/oe7Lw733QdMIlgofDbw1y1iKQIeBToBNwMNwN+F8fUBXgHualrxy8y+Cvwj0AP4v+30TyIdjMaApaM7B1gJFAO/B/5AsID6GIJk/IsWazh8mSA59ydY9/d3CfuWA1OAfuF7zWtamyB0HfA4QUJtPs/MugJPEZQqf9Hd64C7Cbo7zASGALuB+8PjJwD/CXw13FdMsBi55BhVwknGC8eA+xNcVTb5W4LWNd9397HhcacTJONB7r4j3FYNXObu75vZI0AXd78p3NeDYIW5Unff1MrX3Q1c7O4fhFfAlyYuDh5um0pwxfwB8N/dPR7u+xj4r+7+Svh6MFAJdCVoMzUhIY7uBAn6qkwaZpHU0xCEdBTXt0xO4RDEjoRNhwGakm/CtsQr4OZE6+4HzKyG4Cp0k5l9F/h6+DoO9CJI/H9xboJzgSKCzg2JVzMjgSfNrDFhW4zgZuKQFnEcDH9RSI5RApZcM7zpSXgF3A/YamYXEozZXgaUu3tjeAWcuFh4ax8XXyS46n7FzC5OSP6bgL9y9yUtTzCzbQQ9/ppedyMYhpAcozFgyTVXmdkMM+tEMBb8Vjj80JNgiKMKKDSzewiugE/I3f+FYMz4FTNrumJ+APhxuJwoZlZiZteF+x4HrkmI40foZzEn6T9dOopnzOxAwp8nT/J9fk+w1m8NMI3gRh3AC8DzwGpgI8Fsh9aGHFrl7v+b4Ebcy2Fnh38jWNj9RTPbT9Df7Jzw2HLg22Es2wjGfzef5N9HOjDdhBMRiYiugEVEIqIELCISESVgEZGIKAGLiERECVhEJCJKwCIiEVECFhGJiBKwiEhE/j+WCZOvSFKg5AAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.catplot('Embarked','Survived', kind='point', data=df_train);"
]
},
{
"cell_type": "markdown",
"metadata": {
"_cell_guid": "5d41c75f-d13a-441e-b8bf-e2605ce42b6b",
"_uuid": "a2257cddd2784ac55fa3bc40673ef99a7b311aa4"
},
"source": [
"**Embarked and Sex**"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"_cell_guid": "259c13c1-5d2c-4549-95ed-61baa9d2a6c1",
"_uuid": "f9d1d2137f0ce7a8ac1ef9d3bf1f3225dbcbdaf4"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAFgCAYAAADuCe0ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4VNed//H3VAlEFwJEFU3HNFFMN7gXXLCdOO6Jkzj2xsmud7ObTTYbb1zjbJp/m92NN3ESO3biuPeGS1xiwKYaIeqhI4oAIUAgUJn2++MOQsIUCUZzrzSf1/PwiLn3zsxXIOmje+653+NLJBKIiIh4jd/tAkRERI5FASUiIp6kgBIREU9SQImIiCcpoERExJMUUCIi4kkKKBER8SQFlIiIeJICSkREPEkBJSIintSWAioIFCQ/iohIK9eWfpj3BTZWVFQRj6u/oIikX15eR5/bNbQlbekMSkRE2hAFlIiIeJICSkREPEkBJSIinqSAEhERT1JAiYiIJymgRETEkxRQIiLiSQooERHxJAWUiIh4kgJKREQ8SQElIiKepIASSYqWFnPo9f8kWlrsdikiQtvqZi5yWmoXvUx892ZqIzUE+49xuxyRjKczKJGkRKSm0UcRcZcCSkREPEkBJSIinqSAEhERT1JAiYiIJymgRETEkxRQIiLiSQooERHxJAWUiIh4kgJKREQ8SQElIiKepIASERFPUkCJiIgnKaBEgEQiAYmE22WISANabkMyWiIWpa5kFpGVH5I4uMfZdmg/8UP78Lfv4nJ1mSVaWkzd0lmER1+q5U4E0BmUZLBEPE71e/9L3cIX68MJgEg1h179MfFDle4Vl4FqF71MrMxSu+hlt0sRj1BAScaKblpMrHTpMfclDuymbslraa4os2k9LjmaAkoyVnTdvBPuj6z9NE2ViMixKKAkY8WrTzKEV3eISGkJiXg8PQWJSCOaJCEZJxGPE107l3hF6UmPrXn7/+HL6Upo6FSChWcR6NI7DRWKCCigJMNEty6ndv6zxCu2NPk5iYN7qSt+k7riN/H3GEyo8CxCgyfhy8ppwUpFRAElGSG2Zwu1858jtmXZkY0+H/68wcR3rfvc8YHBkwgPO5/ourlE1i+A5IX7+K711O5aT+2nTxEcMI6QmUagz0h8fo2Wi6SaAkratPjBvdQtepnImtmNbsQN9BtF1qTrCHTrR2zPViKrPiKy+mOI1eFr34V259+Bz+cj2NuQNfVmohsXE1kzl9i2lUACYlGiGxYQ3bAAX/suR4YAu/Zx75MVaWMUUNImJeqqqSuZRV3J2xCtq9/uz+1H1qTrCfYdWb8t0K0vgbO+THTrMhKVOyGUhc/nq9/vC2YRGjqV0NCpxKsqiKz9hMiaOc6xQOLQPuqWvkXd0rfw5w0iZKZpCFAkBRRQ0qYk4jEiqz+mbvHLJKr312/35XQla8I1BIdMPa3hOH+HXLLGziQ85griO9cRWTMnOQRYDUC8fAO15Ruo/eQpggVjCRVOI9B3JD5/4LQ/N5FMo4CSNiGRSBArXUrt/OeI79t+ZEcom/CYywmPuhhfMCtl7+fz+Qj0Gkqg11BnCHDTZ0TWzCG2dQWQgHiU6IaFRDcsxNeuM8GhU52w6qYhQJGmUkBJqxcr30TtvGeIla0+stHnJzTsXMJnXo2/XacWfX9fMExoyGRCQyYTr9pDZO0nRNfMIV65A4BEdSWRkllESmbhzxuYnAU4GV92hxatS6S1U0BJqxU/sJvahS8SXde440NwwFiyJl2Hv0t+2mvyd+hG1tgrCI+5nPiu9ckhwPlQd3gIcCO15Rup/fQZggPGOLMA+47SEKDIMSigpNVJ1B507kta/i7EovXb/XkDyZp8A8F842J1Dp/PR6DnEAI9h5A15SZnCHDtXGJblzuzCeNRohsXEd24CF+7Tg2GAPu6XbqIZyigpNVIxKJEVn1I3eJXSdRW1W/3dexO1oQvERw8EZ/Pe/cjNRoCPLj3yBDgvjIAEtX7iZS8TaTkbfzdCwgVnkVwyGT82R1drlzEXQoo8bxEIkF04yJqF7xAYv/OIzvC7ckaN5PQiAvxBULuFdgM/pyuZI25nPDoy4iXbyCyZi6RdfOg7hAA8d2bqN3tXFML9k8OAfYbhc+vb1XJPPqqF0+L7VxHzbxniO9s0O3BHyA04kKyxs5stRMNfD4fgR6DCfQYTNbkG4huLk7OAlyWHAKMEd20mOimxc4Q4JApzhBgbj+3SxdJGwWUeFK8cie1C54nunFRo+3BQRPJmvgl/J16uFRZ6vmCYUKDJxIaPJH4wb1E131KxM6pny6fqN5PZNk7RJa9gz93ACEzTUOAkhEUUOIpiZoqaj97lcjKDyAeq98e6FVI1uTrCfQY7GJ1Lc+f05Xw6MsIFV1KvHzjkVmAtQcBiFdspvaTzckhwNEEC6cR7F+kIUBpk/RVLZ6QiNYRWfFXape8Xj8lG8DXuSdZE68jWDCuUfuhts4ZAhxEoMcgZwiwtNjpBbilpMEQ4GdEN32GL7ujMwRophHI7e926SIpo4ASVyUScaLr5zsTIKoq6rf7sjsSHncVoeHnZvzZgS8YJjRoIqFBE4kf2kd07adE1swhvncbAImaA0SWv0tk+bv4c/sRKpxGcMiUFr9BWaSlZfZ3vrgqun0VtfOeJb5705GNgRDhURcTHnM5vnB712rzKn/7LoRHX0qoaAbx3ZucIcB18xoMAW6h9tOnqZ33HMH+RQTNNIL9RuML6FtdWp+0fdUaYwqBJ4BcoAK4xVq79qhjegB/BPoBIeBD4B+ttVGkzYjt3e6szVRa3GCrj+DQqWRN+CL+Drmu1dZa+Hw+AnkDCSRvTnZmAR4eAoxDIkZ08xKim5ckhwAnEyqchj+3f0YNlUrrls5fq34LPGytfdIY82XgEeD8o475IbDKWnu5MSYEzAG+CDyXxjqlhcQPVVK3+BUiq//m/BBNCvQeRtbkGwh0H+BideALZZNIfmxNfIEQoUETCA2aQPxQ5ZFZgHu3AoeHAN8jsvw9/N36JW8EnoK/fWeXKxc5sbQEVPLMaBxwUXLT08CvjTF51tryBocmgI7GGD+QBYSBbemoUVpOIlJL3bK3qVs6q35lWgB/1z7OooH9ijzxW33W+C9Qt/RtwqNnuF3KKfO370y4aAahUZcQr9hMxM4hum5efeeN+J4t1M57htr5zxHoV+RMWe8/RkOA4knp+qrsB2yz1sYArLUxY8z25PaGAfUA8CJQBuQAv7bWzm3OG+Xmts4bN9uiRDxG1bK/seejp4lV7anfHsjpQtdzbqTj6PO81SQ1bzqcOd3tKlKnxygYNopE7DYOrf2MAyUfcmjd4uQQYJxYaTGx0mL87TrSYcQ0OhadR7jXINd+WagJ+IkAwYCfvDzd4yXemyRxLVACXAB0BGYZY75krX2hqS9QUVFFPJ44+YHSoqJbllE7/1nie7Ye2RgMEx59GeGiGdSGsqmtOORegZkmdziB84aTM6mS6Lp5zizAPVsAiFcfYP+iWexfNAt/176EzOEhwC5pLTEai9d/LC8/kNb3ThUFa2qlK6C2AH2MMYHk2VMA6J3c3tCdwK3W2jhQaYx5FTgPaHJAibtiFVuonf+s07X7MJ+PkDmb8PgvpP2HnjTmDAFeQrjoEmK7NxNZkxwCrHECIb53K7XznqV2/vME+o1ypqwPGNNqeh1K25KWgLLW7jLGFAM3Ak8mPy456voTwEZgBrDAGBMGLgReSkeNcnriVXuoXfQS0TVzcS4lOgL9isiadL1WkvWgQPcBBLoPIDHpeqJblhK1c4iWlkAilhwCXEqsdClk5RAaPJmQmYa/e4EnrhdKZkjnEN8dwBPGmLuBvcAtAMaYt4C7rbWLgO8AvzXGLAMCONPMf5/GGqWZEnXV1C19i7qSdyBWV7/dn9vfWZupz3AXq5Om8AWChArOJFRwJvHq/UeGACtKnQNqDxJZ+T6Rle/j79rHmQU4dKrOhqXF+RKJNnO9pgDYqGtQ6ZGIR4ms/pi6xa+QqN5fv92X042sCdcQHDrFk2szSdPFKkqJrJlLdO0n9UOA9Xw+An1HHZkFGAyf9vtVPftvJCp34uvckw7X/+y0X88NeXkddXqZQl6bJCEel0gkiG0udiZAVO44siPUjvDYywmPvDglP6zEfYHc/gSm9Ccx6Vpipcuc61WlxU4T30SC2JYS58bgrBxCgyc5NwLnDdQQoKSMAkqaLLZrgzMBoswe2egLEBp+LuFxV6n3Wxvl8wcJFowlWDCWeM2BI0OAuzc7B9QeJLLyAyIrP8DfpTfBwmmEhk7Bn9PV3cKl1VNAyUnFD5RTu+BFouvnNdoeLDiTrInX4u/Sy6XKJN382R0Jj7yI8MiLiFVsSc4C/LR+mDe+bzt1C56jbuHzBPqOTM4CHKuzajklCig5rkTtQWqXvE5k+V8hfqQdoj+5BESwV6GL1YnbArn9CEy50RkC3LLcCavNSxoMAS4jtmUZhNsnhwDPwt9jsIYApck0SUI+JxGLEln5PrWfvVbfJRvA1zGPrInXEhw0QT9k5JgSNVVE6ocAN31uv79zL4JmGqGhZ9UPAcZ2rqOu+E0n3ACCWbS/4vutcnFKTZJILQWUR0RLi6lbOovw6EsJ9h/jSg2JRILoxoXUzn+exIEGt6hl5ZA19kpCI87XDZvSZLE9W52zqrWfNJrpCTizAPuMwN+1L5Fl79Dw3jlnv592F/8jwQHufC+cKgVUaimgPOLgS/cQ370Zf/cB5HzxvrS/f3THWmrnPUN81/ojG/1BQiMvJGvsTHxZOWmvSdqGRDxGbOsyp3Ht5uJGw8Un4mvfhZybftmqFqxUQKVW6/mfb+MSyS7fiQbdvtMhXrmD2vnPE920uNH24OBJZE34Ev5OeWmtR9oenz9AsP8Ygv3HOEOA6+c7Q4DlG0/4vMShfcS2riTYvyhNlYrXKKAyVLzmAHWLXyWy8kOntU1SoFehszZTj0EuVidtlS+7A+ERFxAecQE1i18hsviVEx6fqK5MU2XiRQqoDJOI1lG3/D3qlrwBker67f7OvQhPus6ZEqwJEJIGwfwziJzkGF/nnmmpRbxJAZUhEok40bWfUrvwRRIHj6zN5MvuSPjMqwkNO6dVjfVL6xfIL8TfJZ/4vrJj7vd37Uug59A0VyVeop9IGSC6baXTmujwnf8AgRDhohmER1+GL9zOveIkY/l8frIv+BaH3vw51FQ13pfdkewLvqmz+QyngGrDYnu3UTv/OWfJhHo+goVTyRp/Df4O3VyrTQScfn85X3qQyMoPqFv6FsQikJVD+2sfVOssUUC1RfFD+6hb9AoR+zdocBtBoM8IsiZdR6D7ABerE2nM374zWeO/QGT9PKebeXYHhZMACqg2JRGppa5kFnVLZ0G0tn67v2tfsiZfR6DvKA2ZiEiroYBqAxLxOJE1s6lb9DKJQ/vqt/vadyE8/guECqfj82ttJhFpXRRQrVgi2ZCzdv5zxPduPbIjmEV4zGWER83AF8pyr0ARkdOggGqlYrs3O2szbVt5ZKPPR+iMcwifebWW4xaRVk8B1crEqyqoXfgS0bWf0LDBZqD/aGcCRNc+7hUnIpJCCqhWIlFXTV3xm9Qte8eZipvk7z7AWZup9zAXqxMRST0FlMcl4lEiqz6ibvGrJGoO1G/3dcgla8I1BIdMxufTBAgRaXsUUC5LROuIrJlDosppP5Q4tJ/Y7k34cwcQ3fyZszZT5Y4jTwi1Izx2JuGRF2oZbRFp0xRQLkrUHeLQGz9vvPJopJpDL92Lr1NPEvt3HtnuCxAacT7hcVfiz+6Y9lpFRNJNAeWi2gUvHHNZbKBROAUHjidr4pfwd+6VpspERNyngHKJM7Q394TH+HK60u6CbxPopY7OIpJ5dHXdJYnqykbtiI7F38sonEQkYymgXOLL6gC+wAmP8efoZlsRyVwKKJf4wu0IDjzzhMeECs9KUzUiIt6jgHJR1uTr8eV0Pea+8JgrCHTrl+aKRES8QwHlIn+HXNp/4R5CIy+GwzfbBkJkX/BtwhOucbc4ERGXKaBc5m/fheypN+HrlAeAr0M3QoMnat0mEcl4CigREfEkBZSIiHiSAkpERDxJASUiIp6kgBIREU9SQImIiCcpoERExJMUUCIi4kkKKBER8SQFlIiIeJICSkREPEkBJSIinqSAEhERT1JAeYQvlN3oo4hIplNAeUTW+C8QyD+DrPFfcLsUERFPCLpdgDiC/ccQ7D/G7TJERDxDZ1AiIuJJaTuDMsYUAk8AuUAFcIu1du0xjrsO+BHgAxLAhdbanemqU0Tc4Qtlk0DXYeWIdJ5B/RZ42FpbCDwMPHL0AcaY8cC9wEXW2pHANKAyjTWKiEt0HVaO5kskEi3+JsaYHsAaINdaGzPGBHDOooZaa8sbHPcX4H1r7WOn8DYFwMaKiiri8Zb/nEREjpaX19Hndg1tSbqG+PoB26y1MYBkSG1Pbi9vcNxwYKMx5mOgA/AS8KC1tsmJk5vbIXVVi4iIa7w2iy8AFAEXAWHgbaAU+FNTX0BnUCLilry8jm6X0Kak6xrUFqBPcmiP5Mfeye0NlQIvWGtrrbUHgFeBiWmqUUREPCQtAWWt3QUUAzcmN90ILGl4/SnpKeBiY4zPGBMCLgCWpqNGERHxlnTO4rsDuNMYswa4M/kYY8xbydl7AM8Au4CVOIG2Ang0jTWKiIhHpGUWX5oUoFl8IuIizeJLLXWSEBERT1JAiYiIJymgRETEkxRQIiLiSQooERHxJAWUiIh4kgJKREQ8SQElIiKedMJmscaYP+MsGnhC1tpbUlaRiIgIJz+DWgesT/6pBK7G6Ti+Nfncq4B9LVmgiIhkphOeQVlr7zv8d2PMO8Dl1trZDbZNw1meXUREJKWacw1qMjDvqG3zgSmpK0dERMTRnIBaAvzEGNMOIPnxQZyu4yIiIinVnID6GnAWUGmM2YlzTWoa8NUWqEtERDJcs5fbMMb0w1kNt8xaW9oiVZ2aArTchoi4SMttpFaz7oMyxuQC5wLnWGtLjTG9jTF9W6QyERHJaE0OKGPMOYAFbubIzL2hwG9aoC4REclwzTmD+hVwvbV2BhBNbpsPTEx5VSIikvGaE1AF1tr3k38/fJGnjpPcSyUiInIqmhNQK40xlxy17UJgWQrrERERAZp39vNd4A1jzJtAO2PMI8BMnHZHIiIiKdXkMyhr7TxgNLACeAzYCEy01i5sodpERCSDNfkMyhgzxlpbDPy8BesREREBmjfE964xphx4GviLtXZjC9UkIiLSrIDKB2YANwJLjTErgKeAZ621u1qiOBERyVzNbnUE9Y1irwK+BUy21malurBTUIBaHYmIi9TqKLWafQ+TMSYbuAK4HhgPzD7xM0REJB2MMd/DaeAdB3zAf1hrX3W3qlPXnEkSlwE3AVcCK4FngG9Za3e0UG0iItJExphJJE8crLU1xpiOQHeXyzotzTmD+iXOBImx1tr1LVSPiIicmt7AbqAWwFp7ADiQvCTzX8A4IBv4jbX2N8aYK4AfAOcAOcAC4DprbYkbxR/LKV2D8qgCdA1KRFzk5jUoY0wO8DegK/AB8LK19i1jzP3AZmvto8lLNJ/gBNE6Y8zvgE2AAZZba3/hUvnHdMKAMsbcZa19MPn3+493nLX27haorbkKUECJiIvcniRhjPEDU3GWRboV+CPOhLZsjjT57gz8fTK8coClwHbgXGttPO1Fn8DJhvgarvXU7zjHKA1ERDwgGTBzgDnGmHdwuv7UATdYa5cf4yn5QAgntMJATbpqbQoN8YmIpIjLQ3wG8FlrVycf/x3OpLZioCfwTWtt3BhTiHPGVI0zC/tBnLOuHGvtd1wp/jiaHFDGmFeAvwCvW2s9lbJJBSigRMRFLgfUmcD/AN1wJkrsBO4AynAmuZ2DM/W8HLgG5z7W/tbabxpjQsA84PsNllVyXXMC6p9xukgY4BWcLhLveWjMsgAFlIi4yO1rUG1Ns4f4jDFDce6HugFntshz1tp/bIHamqsABZSIuEgBlVrNWbAQAGvtWmvtfTgBVQL8fcqrEhGRjNesVkfGmME4w3w3AnnA88Bxp5+LiIicqua0OloIFAKvAv+Kc/0peuJniYiInJomBZQxxodztvRba+3+li1JRESkidegrLUJ4B6gqmXLERERcTTnGtQSnCG+1S1Ui4hIxpn53VeDwEzgaqAd8CnwxOsPXbXH1cIaMMbcC3Sw1v5rOt+3OQH1EfC2MeZxYAsNWhxZax9LbVkiIm3fzO++2gl4E5jWYPO1wF0zv/vqpa8/dNVCdyrzhuYE1FnARpy7kRtK4PR7EhGR5vkVjcPpsFzgtZnffXXg6w9ddVqde4wxCeA/cM7QcoHbgQuBGTh9+K611q4yxvTCWVKpE05z2Tettd8/zmv+G043iiCwDbi9JdYGbHJAWWvPS/Wbi4hkqpnffTUXuPkEh/QCvgQ8mYK322etnWCMuRZnJvYN1tp/N8Z8H7gL+DKwD5hpra1Ktj56xxgzw1r7dsMXMsZ8GRgMTE729vsW8NBJPpdT0pxp5sedUOGhdkciIq2FwekgfiJFKXqvZ5MfPwMS1to3ko8XA19M/j0A/MIYMxWnZ18vYAzQKKBwGtCOBz5z+tMSBCpTVGcjzRnii3L8pTUCKahFRCST7G3CMftS9F6HhwljJFfcbfD4cA78C077uknJJeN/hzPUdzQf8ON0zD1oTqujgcCgBn/OAl4H/q4F6hIRaetW47SLO5FnT7I/lboAZclw6oOz0OGxvAZ82xjTFcAYk2WMGd0SBTXnGtTmozZtNsZ8FVgIPHqy5yfXIHkC5yJdBXCLtXbtcY41ONPa/y/d0xpFRNLh9YeuSsz87qv/BLzDsYf6fvH6Q1etT2NJ/wM8b4xZDmwFjrnshrX2z8aY7sDfkkN8fuD/cFbmTanTWrDQGNMPKLHWdm3CsR8Aj1lrn0xeZLvVWnv+MY4L4PzDbAe2NyOgClA3cxFx0al0M5/53VenAg8Ah38ebsBZv+m3rz90VUb/MGvOJIk/0/gaVHvgbJoww8QY0wMYB1yU3PQ08GtjTJ61tvyow38AvAF0SP4RSYul63bz9vxSZkzqz+gh3d0uRzLE6w9d9QlwwczvvtoZyALKMz2YDmvOJIl1Rz2uwunN99cmPLcfsM1aGwOw1saMMduT2+sDKjmOeQlwHvCjZtRWLzdXmSan5o0nF7N+ayXRRIILpwx0uxzJMK8/dFWLzIRrzU4aUMllhGuTa0AdPhv6FTAC+NQYM89ae9o9+pLz7n8HfD0ZYKf0Ohrik1NVdbCu/mN5+QGXq5HWKC+vo9sltClNmcX3K5z58If9DhiS/DgS+HkTXmML0Cd5fenwdabeye2H5ePc/PWWMWYT8B3g9uRURxERyTBNGeIbBswGMMZ0AS4HRlhr1xhjXgM+Ab59ohew1u4yxhTjLHT4ZPLjkobXn6y1pUD9wL9bzQlFRMQbmnIGFQTqkn+fjDNPfg2AtXYLztz5prgDuNMYswa4M/kYY8xbxpjxzapaRETavKacQa3A6a77HHADUD8pInkzV5Mu7FlrVwOTjrH9suMcf29TXldEpLXb8OA1PpxbZdoB6wfd9WLtiZ+RGZpyBvVvwCPGmD04w3s/a7DvemBuSxQmIpIJNjx4zaVAMc79TyuArRsevOZHGx68JiUt5IwxVxtjVhljlphTnX3W9Pd63BjzD6l6vZOeQVlr5xhj+uMsVrjGWttwetObwDOpKkZEJJNsePCaK3C6izc8WegO3I9zG04qWsl9E7jbWvt8Cl4rrZp0H1QylBYfY7tNeUUiIhkgOaz3EMcfybp9w4PX/GrQXS+uPNX3MMb8FzDd+av5Nk4jhJ/irPkETnC9aYwpABYBv8dZJ6odzvIZd+BcmqkGrrLW7jDGjMJpbZSD00z2d9baXx3jvcPAgzhrCGbh9B38VnNuS2pOs1gREUmdkTgjUydyzem8gbX2n3GC5x+BLwC/BW6y1p4JXIFz+ebwRLdcYI61dixOf9X3gYettUU4JyiHh+42ARdaa8cBE4G/M8YMO8bbfx+otNZOtNaOxmlf9+/Nqb85nSRERCR1mtL2JpWtcabirEoxq8GlqATOfa27gSpr7ZvJ7Z8BW621xcnHiznSqq498Jtk5584zj2to4FVR73flUAnY8yXko+zaGZDWQWUiIg7VuIMnbU7wTGLUvh+Ppzm3mcfvSM5xHf0OlE1Rz0+nBc/AXYAX7PWRo0x73L8daO+ba394FQL1hCfiIgLBt31YiVwokX/NuFMoEiVT4ChxpjzDm8wxkwwxjS3A3sXYEsynEbiXOM6lteAfzHGtEu+V8fjDAUelwJKRMQ938NZveFopcDlg+56se4Y+06JtXYvzrDbPcaYpcaYVcC9OGc6zfFjnDZ0Jcnnf3yc436KM6S3MHnsHJzORE12WutBeUwBWg9KTsO/P/IpO/dW07NrO/7zm1PcLkdaoVNZDyo5m28aziSGbGAe8Nygu16sOeETM4CuQYmIuGjQXS8mcPqdzna7Fq/REJ+IiHiSAkpERDxJASUiIp6kgBIREU9SQImIiCcpoERExJM0zVwyXjyRwG7ey6HaKOA0JxMR9ymgJKNt2VXFb15Zzo49h+q3le+rZv7KnUwa3tPFykREQ3ySsfYfquOXzyxpFE4AiQT87vUVrNq816XKRAQUUJLBPi7ezoFDkWPuSyTgzU83pbUeEWlMASUZa+WmPSfcv3rzPuJtp1elSKuja1CScXZXVjOnpIx12/af5MhEs9s8i0jqKKAkI0SiMZas3c3spdtZuWlvk2bq+Xw+Fttyxp/Ro8XrE5HP03Ib0qaV7jzA7JIy5q3YwcGaaKN94aAzwl0XjZ/wNSaP6MnNFxWSkx1qsTqlbTiV5Tbk+HQGJW3OoZoI81buZHZJGZt3HPjc/kG9OzGtKJ9Jw3pSebCO3722gk0NjvP7YOTAXEo2VAAwb8VObOk+vn7ZGYwcmJu2z0Mk0+kMStqEeCKBLd3H7JLtLLblRI46K+rQLsTUkb2YVpRP37wOjfYlEgk27TjAf79Qwv6DdfTo2o6ffnMKKzbhba77AAAXQElEQVTu4bG3VrH3QG39seeN68N15w4hKxxIy+clrYvOoFJLZ1DSqu3ZX8Pc5TuYU7Kd8n2NFyD1Jc+EphflM2Zod4KBY09a9fl8DMzvRLtwgP0Hj6x/PWJgN+7/xkSeem8Nn67YCcCHn21jxcY93Hb5cIb07dySn5pIxlNASasTjcUpXrub2SVlLN9YwdGDAN07ZzO9KJ+zRuXTrVP2ab1XTnaI22eOYOzQPP70jqWqOsKuvdX8518Wc+mkAVw1bSChoO7WEGkJCihpNbaVVzG7pIxPlu+gqrrxDbahoJ8zTR7Ti3pj+nfB70vtSMv4M3owtF8Xnpi1muJ1u0kk4K15mylZX8HtM4fTr0eHk7+IiDSLAko8rbo2yoJVzoSHDds/f9/SgJ4dmT46n8nDe9K+hWfZdc4Jc+c1o5i7bAdP/XUNNXUxtpZXcf/jC7l6+kBmTOpPwK+zKZFUUUCJ5yQSCdZurWT20u0stLuoizSe8JCTHWTyiF5ML8qnf8+Oaa3N5/MxrSifMwZ04bE3V7G6dB+xeIIX/7aB4nW7ue3y4fTs1j6tNYm0VQoo8Yx9VbV8snwHs0vK2HlUA1cfMLygK9OKejOusDuhoLuz6Lp3bse/3jiW9xdt5YW/rScSjbN+237u+eMCrjtvCOeN7YMvxcOMIplGASWuisbiLFtfweySMkrWV3yu911upyzOGpXPtFH5dO/SzqUqj83v83HRhH6MHNSN37++kk07DlAXifPku2tYsqacr1827LQnaYhkMgWUuKKs4mD9hIf9B+sa7QsGfIwrzGNaUT7DB3TD7/f2mUh+bg4//MqZvPXpZl7/ZBOxeIIVm/byo0cX8OWLCpk8oqfOpkROgQJK0qamLsrC1buYXVLGuq2Vn9vfN68D00fnM2VELzq0a11thYIBP1dOG0jRkFz+8MYqtu8+SHVtlN+/sZLP1pbzlUsMndqH3S5TpFVRQEmLSiQSrN++n9lLt7Ng9S5q62KN9rfLCjBpuDPhoaBXx1Z/plHQqxP3fG08L328gXcXbCEBLLblrN2yj69eegZjh+a5XaJIq6GAkhax/2BdcsLDdsoqDn1u/xn9uzC9qDfjTB5ZobbVNigUDHD9+UMZM6Q7j765it2VNew/FOF/X1zGtFH53HjhUNpl6VtP5GT0XSIpE4vHWb5hD7NLyli6bjexo3oidu2YxVmjejFtVD49urb9qdimf1fuu3Uiz36wlo+XlgEwZ1kZqzbv5dbLhzFsQFeXKxTxNgWUnLadew8xp6SMucvK2FfVeMJDwO9jzJDuTB+dz8iBuZ6f8JBq7bKCfO3SYYwdmsfjs1ZTebCOiv01/OLpJVw0vh/XnDOIcBs7gxRJFQWUnJLaSIzFdhezl5Zht+z73P7e3XOYXpTPlJG9NDkAGD2kOw/cNok/v2NZuHoXAO8t2sLyjRXcdsVwBuZ3crlCEe9RQEmTHV6WYvbS7cxftZPq2sYTHrLCASYN68n0onwG9e7U6ic8pFqHdiG+dfVIxq3cyZPvWg7WRCmrOMSDf1rMFVMHcMXUguN2XBfJRAooOamq6gifJic8bC0/+Ln9Q/t2ZnpRbyac0UPrJDXBpOE9KezXhT/OWsXyDXuIJxK8NncTS9dVcNsVw+iTp8azIqCAkuOIxxOs3LSHj0vKKF5bTjTWeMJDp5wwZyUXAMzPzXGpytara8cs/vna0fyteDvPfrCO2kiMzTsPcN/ji/ji2YO4eEK/jLteJ3I0BZQ0Ur6vmrnLypizrIw9+2sb7fP7fBQNzmX66HxGDcrVcNRp8vl8nDu2D8MLuvKHN1exbmsl0Vic5z5cR/G63Xzj8mHkeay9k0g6KaCESDTG4jXlzF7qTIE+Ws9u7Tk7OeGhS4csFyps23p0bc8PbhrHOwtLefnjDURjCdZs2cfdjy3gxguGMr0oX9fzJCMpoDLY5h0HmFNSxryVOzhYE220LxzyM+GMHkwv6s3Qvp0z4gdkdjjY6GM6+f0+Lp00gFEDc/nDGysp3VVFbV2Mx2et5rM15Xzt0jP0y4FkHF/i6PWyW68CYGNFRRXxeJv5nFLuYE2EeSt2MrtkO6U7qz63f3DvTkwf7Ux4yLRuB0vX7eadBaVcMrE/o4d0d62OaCzOa3M38eanm+qXs8/JDvKVSwwTh/V0rS45uby8jm3/N7k0UkB5xNJ1u3l7fikzJqX+h2M8kWD15r3MKSljkS0nGmu8AGDH9iGmJBcA1Awy71i/vZI/vLGq0dpYk4b35OaLCltdM91MoYBKrbQFlDGmEHgCyAUqgFustWuPOuZHwA1ADIgAP7TWvtPEtyigFQfUfX9cyOadBxjQsyP3fH1CSl5zz/4a5iwrY05JGbsraxrt8/lg1KBcphflM3pId0148KjaSIwXPlrP+4u31m/r0iHM1y8bxqhBuS5WJseigEqtdI7h/BZ42Fr7pDHmy8AjwPlHHbMAeMhae8gYMxr4mzEm31pbncY6XVFTF2308VRFonGK1+1m9tLtrNi4h6OjOq9LNtOKenPWyF5aTK8VyAoFuPmiQsYO7c5jb61iz/5a9lXV8V/PLeXcMb257vwhrlwzE0mHtHxlG2N6AOOAi5KbngZ+bYzJs9aWHz7uqLOlEpyVvnOBrcgJbd1VxeySMj5dsYOq6kijfaGgn/Emj+lFvSns3wV/Bkx4aGuGF3Tj/lsn8fRf1zB3+Q4APirezopNe/jG5cMp7NfF5QpFUi9dv3r1A7ZZa2MA1tqYMWZ7cnv5cZ5zC7DeWtuscMrNbZ3XUALJIbZAwE9eXscmPedgdYSPi7fx3vzNrD1GP7wh/bpw0cT+nD22r65ZtBE/+PokPl1WxsMvFFNZVUf5vhp+9tRnfPHcIdw84wxCQXXykLbDk2MDxphzgAc4csbVZK31GlQsOXEhFotTXn7guMclEs49Mh8vLWOx3UVdtPGEh5zsIFNGOB0e+vd0gq66qobqqppjvZy0QkN6deC+r0/kibdXs2TtbhIJePHDdcxbXsbtVwyv/3+X9GvqL5fSNOkKqC1AH2NMIHn2FAB6J7c3YoyZAjwJXGWttWmqz1WJRKK+ldDxsnXvgVo+WV7G7JIydu1tfEnOBwwf2I3pRfmMHZpHKKgJD21dp5ww//DFUXyyfAdP/XUN1bUxtpUf5IEnFnHltIFcNrk/Ab++DqR1S+csvo+APzSYJPENa+15Rx0zAXgRuNZaO7+Zb1FAK5zFt2LjHp75YC3bGjRhPXt0b268YCiBgI+l6yqYU7Kdkg0VHP1fldspm2lF+Zw1qhfdO6slTqaqqKzhsbdWNeoCMqh3J267Yji9urX9hSG9RLP4UiudAXUGzjTzrsBenGnm1hjzFnC3tXaRMWYhTtBsa/DUr1hrlzXhLQpoZQFlS/fyi2eKj1lvt05ZRKJxDhxqPOEhGPAxrjCP6aN7M2xAV014EMC51+2DxVt54aP19cO+4aCfa88bwnnj+ujrJE0UUKmlG3Vd9JM/L2bdtsomHduvRwemF+UzeUQvTXiQ49qx5xB/eGMlG7bvr982bEBXvnH5MN1WkAYKqNRSQLlk/6E6vvM/c054TMDv4+wxvTm7qDf9e3bIiH54cvpi8ThvzSvltTkbiSW/F9plBbjpwkKmjuylr6MWpIBKLV1FdUkkEj/pMWeaHnzlYsOAXh31Q0WaLOD3M3NqAf9xy3j65DlrdVXXxnj0zVX8+qVl7D9Y53KFx7Z03W5+9pfPWLput9uliEcooFzStWMWXTueuDt1Yb/OaapG2qIBvTpy91fHM2NSfw7/erNk7W5+9Oh8PltzvNsP3fPK7I3YLft4ZfZGt0sRj1BAucTv93HJhH7H3d8pJ8yUEb3SWJG0RaFggOvOG8K/3TyOvC7ONagDhyL8+qVlPPrGSg7VnF5rrVRKVbsvaTsUUC66cEI/Lhzf93PbDy8HnmnLXUjLKezXhftunci5Y3rXb5u7fAd3PzaflZv2uFiZyPEpoFzk9/m46cJCfvJ3k8lJzszrnBPmp9+cwoBeuiNdUis7HOSWGWfwnWtH07lDGIA9+2v55TPF/OW9NdRGYi5XKNKYAsoDenVrT4fsw6u5BtQJQlpU0eBcHvjGJCYNP7L44fuLt3LvHxeyfnvTbnsQSQf9JBTJQB3ahfjmlSO446oR5CR/Odq55xA/+fNiXvp4/ecWtRRxgwJKJINNHNaTB26bRNFgZ/HDRALe+GQzP35iEVvLq1yuTjKdAkokw3XpkMU/famIr84wZIWd5TpKd1Vx/+MLmTV/c6u48V3aJgWUiODz+ThnTB/uv3UihX2d+++isQTPf7ienz31Gbv2HnK5QslECiiPOLxst5bvFjfldWnH928ax3XnDSGYXERz7dZK7nlsIR8Vb6MNtUaTVkAB5RFXTx/IGf27cPX0gW6XIhnO7/cxY1J/7vnaeAYkFz+sjcT409uWXz1fwt4DtS5XKJlCAeURo4d05/s3jWP0kO5ulyICQJ+8Dtx1y5lceVZB/XIdyzZUcPej85m/cqfL1UkmUECJyHEFA36unj6Iu245s37xw4M1UR55bQW/eWU5VdWRk7yCyKlTQInISQ3M78S9X5/QqDXXwtW7+NEf5lOyXt3HpWUooESkScIhZ02p7904ltxOTif+yoN1/Or5Eh6ftZrqWjV5ldRSQIlIswwb0JX7bp3EtFH59ds+Xrqdex5bgC3d62Jl0tYooESk2dpnB7n18mHcec0oOrV3Gh3vrqzh508t4dkP1hKJqvGsnD4FlIicsrFD87j/tkmcWZgHQAJ4Z8EW7nt8EZt3HHC3OGn1FFAiclo6tQ/z7S+M5PYrhtevYbZ990F+/KdFvDZ3I7G4Gs/KqVFAichp8/l8TBnZiwe+MZERBV0BiMUTvDJ7Iz/582LKKg66XKG0RgooEUmZbp2y+Zfrx/DliwsJJ9c121h2gHv/uJD3Fm4hrlZJ0gwKKBFJKZ/Px/nj+nLfrRMZ3KcTAJFonKffX8svn17C7spqlyuU1kIBJSItome39vz7zWdyzTmDCPidVkmrS/dx96MLmF2yXY1n5aQUUCLSYvx+H5dPKeBHXx1P37wcAGrqYvzxrdX874vLqDxYB0BlVS01dc7UdA0DymG+NvRbTAGwsaKiSgusiXhQJBrn1TkbmTV/M4d/7HRoF6KgV0dWbt7b6Pv2gjP7cv35R5b8aC3y8jr63K6hLVFAiUhardtayR/eWMmufSe+FnXBuL7cfHFhmqpKDQVUarWuX09EpNUb0rcz9906kakje53wuA+Lt7GvSmtPZTIFlIikXVY4wPDk/VLHE48nWL1Zvf0ymQJKRFzRlKsLGqzPbAooEXGF6d+FE12w8fnA9OuStnrEexRQIuKK7p3bnfA61LRR+XTrlJ3GisRrFFAi4ppbZhimjuz1uTOps0b14ssXG1dqEu9QQImIa0LBALddMZz/vGNK/bpS3Ttn843LhxMK6sdTptNXgIi4rkeXdvVLdRxuiySigBIREU9SQImIiCcpoERExJMUUCIi4kkKKBER8SQFlIiIeJICSkREPEkBJSIinqSAEhERT1JAiYiIJymgRETEkxRQIiLiScF0vZExphB4AsgFKoBbrLVrjzomAPwPMANnMc2fWmv/kK4aRUTEO9J5BvVb4GFrbSHwMPDIMY65GRgCDAWmAPcaYwrSVqGIiHhGWgLKGNMDGAc8ndz0NDDOGJN31KHXA7+31satteXAK8C16ahRRES8JV1DfP2AbdbaGIC1NmaM2Z7cXt7guP7A5gaPS5PHNFlubofTLFVE3NAhJ8zOvdV0yAmTl9fR7XLEA9J2DSpdKiqqiMcTbpchIs10xeQBvLOglEsm9qe8/IDb5ZwSBWtqpSugtgB9jDGB5NlTAOid3N5QKTAAWJh8fPQZlYi0UaOHdGf0kO5ulyEekpZrUNbaXUAxcGNy043AkuR1poaeB243xviT16euBl5IR40iIuIt6ZzFdwdwpzFmDXBn8jHGmLeMMeOTx/wZ2ACsBeYB91trN6axRhER8QhfItFmrtcUABt1DUpE3JKX19Hndg1tiTpJiIiIJymgRETEkxRQIiLiSQooERHxJAWUiIh4kgJKREQ8qS21OgoA+P2a5SkirikAtgJRl+toE9pSQOUDdO2a43YdIpK5NgIDgU0u19EmtKUbdbOACUAZEHO5FhHJXDqDSpG2FFAiItKGaJKEiIh4kgJKREQ8SQElIiKepIASERFPUkCJiIgnKaBERMSTFFAiIuJJCigREfGkttTqqFUzxlwL/BDwAdnAZ9bam9ytKjMYY0LAj4AbgBqcTiQfAD+w1kbcrC0TGGOygJ8AVwMRnP+DB621z7tamLhOZ1AeYIzJB/4PuNJaOwYYBvzC3aoyyh+BEcCZ1toinJZZFqd9lrS8/wP6AiOstWcAXwZ+ZYy5wN2yxG1qdeQBxpixwJvAEGvtIbfrySTGmKFAMdDXWrvX7XoyjTFmALAC6G+t3dNg+7eAG621Z7tWnLhOQ3zesBRYAJQaYz4C5gB/ttZWuFpVZhgLrFU4uWYUsK5hOCXNwxn2kwymIT4PsNbGrbVXA+cCHwKXAyXGmG6uFibS8k60gJuGdzKcAspDrLXLrbUPW2svAipxAkta1hJgqDGmq9uFZKhlwJBj/DI2GfjEhXrEQxRQHmCM6WOMmdLgcV8gD2fxM2lB1tq1wGvAI8aYjgDGmIAx5jZjTAd3q2v7rLWbgOeB3xhjsgGMMSOBfwb+w8XSxAN0DcobgsB9yQvG1Ti/OPyHtXaJu2VljK8C9wCLjTF1OP/+bwG1rlaVOb6Nc71ppTEmAfQBJltri90tS9ymWXwi4hnJe9IeAfoBM621NS6XJC5SQImIiCfpGpSIiHiSAkpERDxJASUiIp6kgBIREU9SQEmbZox53Bjz4xS+3r3GmCdT9FqbjDEXpuK1RNoi3QclnmSM2QT0xFn64rDHrbX/4EpBIpJ2CijxspnW2r+6XcRhxhh9v4ikkb7hpFUxxnwNuB2n+/vXgT046wcVAg/grOH0PWvtEw2e1t0Y8x5Of7fPgFustZuTr/ffwBeBzsBa4DvW2tnJffcCI3EW0LsS+JejagkBfwLCwI1AFPh+sr4uwPvAHYc7dRtjvgL8GOgA/L8U/ZOItFm6BiWt0SSgBMgFngKewVlkcAhOWP36qD56N+OEV3ectZ/+0mDfQmAM0C35Ws8f7gmXdBXwAk7g1D/PGNMOeAWnHdJ11to64E6cVWHPAXoDe4GHk8cPB34DfCW5LxdnkT4ROQ51khBPSl6D6o5zVnLY93CWBL/LWjs0edwonLDqZa3dmdxWAVxgrS02xjwOZFtrb0ju64DTKb7AWrvlGO+7FzjXWrs0eQZ1fsNF85LbxuGccS0F/slam0juWwX8g7X2/eTjfKAUaAf8EBjeoI4cnAC7zEvDmCJeoiE+8bKrj/7hnRzi29lgUzXA4XBqsK3hGVR9EFlrq4wxe3DOYrYYY/4V+EbycQLohBOMn3tuA5OBEM6Krw1/wxsAvGyMiTfYFsOZ7NH7qDoOJoNURI5DASWZoN/hvyTPoLoB240x03GuGV0ArLDWxpNnUA0X0TvWEMO7OGdt7xtjzm0QjluAW621c49+gjGmDBjW4HF7nGE+ETkOXYOSTHCZMWaaMSaMcy1qXnJ4ryPOEGI5EDTG3I1zBnVS1tqf41yzet8Yc/iM67fAg8llUzDG5BljrkruewG4okEd96PvP5ET0jeIeNnrxpiqBn9ePsXXeQpnvac9wJk4EykA3gHeBtYAm3Fm6x1rSO+YrLUP4EyU+GtyRdj/xln88F1jzAFgHs6EDqy1K4C/T9ZShnP9aespfj4iGUGTJERExJN0BiUiIp6kgBIREU9SQImIiCcpoERExJMUUCIi4kkKKBER8SQFlIiIeJICSkREPOn/A/o/j3ECZb9LAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.catplot('Embarked','Survived', hue= 'Sex', kind='point', data=df_train);"
]
},
{
"cell_type": "markdown",
"metadata": {
"_cell_guid": "6891d2dc-0121-442b-809e-b236c6d52ca2",
"_uuid": "b4a4775d5992483cbca12f98dcff676a3804310c"
},
"source": [
"**Embarked, Pclass and Sex :**\n",
"\n",
"** Practically all women of Pclass 2 that embarked in C and Q survived, also nearly all women of Pclass 1 survived. **\n",
"\n",
"** All men of Pclass 1 and 2 embarked in Q died, survival rate for men in Pclass 2 and 3 is always below 0.2 **\n",
"\n",
"** For the remaining men in Pclass 1 that embarked in S and Q, survival rate is approx. 0.4 **"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"_cell_guid": "dc3d169f-b2e8-4df8-b4e6-dced76b43bee",
"_uuid": "a1f54e702d6fe53ef1f60032469d24d956cb366a"
},
"outputs": [
{
"data": {
"image/png":...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here