This is calculus 1 homework.
Section 3.3
11, 13, 15, 17, 19, 21, 23, 25, 26, 27, 29, 45, 47, 49, 51, 53, 55, 57, 59, 61,62, 66, 67, 68
For each question you need to show your work and write a proof for each question.
The answers have to be handwritten and you have to put my name on the top left corner of the first page as Zack Aldawoody.
You have to combine all the answers in one PDF file.
The last picture is for the answers so they have to match with your answers.
1100,01 = (1)f ‘TT xs00 + xuis,2 = (¥)f ‘TL puis 9sodg = (9)f ‘LT suoioun4 2u3dwouobi] Jo saARARA €°E NOILD3S X Aq Jojeurtrousp pue Iojeloulini 9pIAIPp 9M 19H NOILNTC
<— x="" sb="" ()="">—><— §="" uy="" ‘x/="" —="" g="" 10]="" om="" j]="" (6="" —="" um)?="(0)F" ‘01="" q="" ‘8="" aq="" ‘vy="" $9s1219x7="" z="" ue)="" 4="" z="" 998="" :="" 141="" od="" h="(2)b" -0¢="" —="A" 6]="" z="" juss="" g="" s00="" quis="7" ue)="" goo="" i="" i="" ag="" +="" hl="" ‘gl="" —="(mf" ‘ll="" x00="" ,x="" +="" xg="(Y)b" 9="" juts="" mods="" +="" |="" 2="" xue)="" —="" ¢="" oo="" x08)="" —="" xi398'7="—" =="" ()f="" ol="—=4ucl" 7109="" x="" xuis="" yp="" —="" xu)="(X)f" °c="" xs="" —="" 0="" s00="" +="" |="" ie)="" tw="" ——="(0)" ‘el="" xx="" s0j="" g="" us="" 0="">—>
<9 om="" wi="0" 1.="" —="" §="" sod="" :9="" aq="" jojrutiousp="" pub="" jojeiawinu="" spiaip="" 9m="" §="" pue="" g="" suohendh="" 2s="" 01="" 1="" g="" uis="">9><0 f="MNT" dul="" i="" —="" s09="" i="EL" :="" i="" (¢="" uonenbyg="" pue="" aurs0d="" jo="" ainunuod="" ay)="" £q)="" ae="" se="" (0="" s09="" x="" x="">0>
|x| 10], f pue [ yioq Surydess £q 9[qeuoseal SI (8) Jed 0) Iomsue oA Jey) 3s 03 Joy) (q) my &v (x), Puy x — x 03s = (X)/ JI (v) ‘€€ ‘U9910S JUWIES J UO UI] juaSue) ayy pue 2AInd oy) Juryderd Aq (e) 1red arensayy (q) ‘(€ + £ ‘g/u)uiod ayy Ie ¥ $00 9 + x¢ = 4 9AIND 3 03 aur juasue) ay) jo uonenba ue pury (e) ‘ze RI] SL] "U9QI0S QUILS AY) UO UI] juesue) ay) pue aA ay) Suryders £q (2) 1ed sjensny[y (q) 3 “(L ‘g/x)utod ayy Je x us xg = & QAIND A) 03 aul] Judgue) ayy Jo uonenbs ue pury (8) ‘LE NL] Fr >. = > X S02 =i) cf =A (1 ) ST 0€ 4) HH (10) XuIs + xs0d,2 = { 62 (Lz) xus + x=4 gC (10) S00 + xuIs = £ LT -qurod uaAIs ay) Je 9AIND AY) 03 AUT juaSue) ay Jo uonenba ue pul 0£-LT x uis— = (X),f ua ‘x S03 = x) f J1 Jel) ‘ANBALIDP © JO uonIugap AY) SuIsn “9A01d ‘9 xp 2X. 080— = (X 1) Jey) MOUS ST 2 PD U . “x up) X 098 = (X 098) = 1eYl MOUS HT Ap : : . x 700 X 983— = (¥ 289) = Jy) MOUS “ET ‘Ib sajny uonenuasayla € ¥3ldvHO 861 memes ‘6 pue J JO SOATIRALIOP Uf) JO SULIS) UL 6 0 / = J JO 9AIRALIOP 1) PU 01 MOY ST S[[3) BY) S[NI © SARY 0) [NJASN aq PINOM 11 0S ‘6 pue J (10q RHUIIIP 0) MOY MOU IM Bo f= 4 ‘sty ((X)h)S = (¥)4 = £ SIM UBD IM UY) °[ + X = (x)b =n W[ pue np = (n)f = £ 19] om JI 0B] UJ ‘uOnOUNY 3)sOdwWod © SI J Jey) AAIS0 “(X),{ @1B[NO[ED 0) NOK A[qRUD Jou op 101deyo SI) Jo SuonNoas SNOTAdId AY) UT Paes] NOA SB[NULIOJ UONBHUISIIIP AY.L I + XN =(X)d UONOUNJ AY) AJLNUISLIP 0) PASE 218 NOK osoddng any ureyd ayL ((®) 1ed 0) JTomsUR INOA WLIGUOD SANJA asay) 0 "(0 18 f JO SWI] JYSU pue 3] ay are[nofe) (q) {0 18 dARY 01 readde 31 sop Aymunuodsip jo ad) yey “f ydern (e) my XxX x S02 I = (¥)£1971 89 . J v= == & Lies ST = X 23S (q) *suoi3ouny asodwon JO M3IA3I B OJ £7] UOI}IRS 33§ ve X 08d X00 + | =X S00 -F x IS (2) X S00 =x un] (D) X UIs “AuapI (TeIIUIE} 10) M3 EB TIeIQ0 01 ANUS JL)SWOU0I LI) ord )eNUdII[ *S9 g (q) pur (e) sued sjensnfy (9) X gx — uIs x wif jenfeaq (q) I xX w—X — us x wif geneAy (8) ‘v9 I yms =47— £1 { uonenbs [ENUsISlip 94) SOUSUBS X S00 g + XUIS Y = 4 TOIOUN] 2) J8Y) (Ons g PUB y/ SIUBISUOD PUL ‘£9 puL] "9 [Sue [enuad © Aq papuLlqns oq pP qSu9] i 1) «XP xP ‘29 (x urs) ‘19 JO PIOYD © UE § YISUS[ JO OI JB[NOIIO © SMOYS omy ayy, *L9 a 0 0 go ov puy ‘o[SueLn ay) Jo Bare 34) 1 (0)g pue S[OIOIWIS ay) Jo eae ay) st (9)V II -aInSy AY) UI UAMOYS SE ‘QUOD Wedd -901 [RUOISUWIP-0M] © I] padeys uorsaI e uLioj 01 Od o[SurLn SA[0SOSI UL UO SIS Od 1IPWPIP [IM [IIIS ‘99 any ureydayL ve NOILD3S SE p 66 p *SIN000 Jey) urayjed oy) SUTAISSQO PUB SIAIIBALIOP 449] 181 ay} Surpuy Aq 9ANBALIOp USAIS oy) pur z9-19 C—X + Xx X SOO — X UIS p/L< (¢x)urs="" l="(am" 0=""><2 (x="" uis)urs="" x="" oso="" wy="" di="" 0="" nt="" us="" x="" 0x="" :="" wi="" xg="" uis="" x¢="" uis="" xo="" os="" x¢="" uis="" :="" 6,="" ue)="" oo="" xo="" gx="=" =="" ln="" cu="" 0="" urs="" xz="" ue)="" xz="" oer="" or="" 0x="" wij="" _—="" wu="" x0osi="" |="" x="" soo="" x="" uis="" —="" x="" uis="" na="" ns="" (s="xg)," gs="" —="" {xox01="Co" l="" (1="Xe?" =="" ®f="" sl="" (go="" wsgt—="(9),4" ‘51="" i="" f="" 5="" a="" lr="" xt="" 4="" (x="" 500)800="" x="" wis="" —="pp" ex="" —="" s)xti—="xp/hp" =="" xp/dp="" *g="" 90c="" 35vd="" m="" t°€="" s3asidyixi="" %.989="" t="L9" =="" x="" uis="" —="" xs09="" (9="X30" :="" ©)="" so="" 008="" @="" x,s00="" x="" urs="" 4="" 0="" 998="" (©)="" 's9="" h_—gy-—="v-'g9" xs00-="" ‘19="" zh="hee"> U~iug) 25g TL we ols coer Ty fsy pus eh Wop orig My— p— ‘gM (Q) jus §— = (Hp 15008 = (1) (¢) ‘Lb ror ue u ‘wt x u(] + U7) "6€ xs + X809 = (x), f (Q) xo9s/(x ue) + [) = x), f (©) LE 0 ¢ 0 QUIST + 9SO09 97 — HUIS H— QUIS — S026 [ — Xue} X09 (®) °€€ ‘GE = @ xz=L@¢te Lom tT = fo tBE inl 975000 + pr usd = (0).4 “IT +1) 5 98 =D _ yf JUS + 1509(3 + 2) 7 m ue) Mm IST L(x uel = 2) — del ae 1 008 Tr HU = C 0 S09 + £7 i ‘LL I = (0).f €l 75001 UIST (1).H I ; S00 — 0 S02 6 = ©0).f 6 QUIS + QUIS + Oc Se (uy + 0:2 (0 Wee or Q S02 0) 0 B= 0) .4 S Le dp sung ret =007 [61 3D0VYd ® €€ s3siDyaXd : ? + 0) = ed (0 — wu 4 xug + x] = (@)d +20C + X01 + ¢ so “(C1 + X8 + X) = Ops 20 + X9 + ¢ 82900 + Xp + X) = 0), f x «2¢ (0) ‘€9 'S 9JE1NSQNS © JO UOHRIUIOUOD AY) 0) 109dSaI (ITM UOT)OBAI ONBWIAZUS UE JO SBI 9) JO 23UBYD JO 918 AY} Ss] + S100) : L9 12000 Ted /UOT[[TW 9'65¢S ‘6S 14S (EN 1)ee/ = T-) onl SS xX ww © L()6] (x) bx — (x)b Id_@ ¢€@°Ls 8 H¥—=1 "6p Lh ore) E-@ 9 Ws Lev = 4@ f+ (x)fr= A (v) ‘ES 1+ x=» () Ie = exi = le d= =) Plt ¢ ‘c€ ka See Te ¢2>