Therefore n-1 ( fei+29 + fei+1k\ feip + fei-1h fei-1P+ foi-2h ) foi+19 + foik Iên-4 = hI i-0 Also, from Eq.(8), we see that I6n-526n-6 I6n-3 = X6n-6 + X6n-5 + *6n-8 n-2 (fsi+aP + foi+3h\ ( foi+69 +...


Show me the steps of determine red and information is here step by step


Therefore<br>n-1<br>( fei+29 + fei+1k\<br>feip + fei-1h<br>fei-1P+ foi-2h ) foi+19 + foik<br>Iên-4 = hI<br>i-0<br>Also, from Eq.(8), we see that<br>I6n-526n-6<br>I6n-3 = X6n-6 +<br>X6n-5 + *6n-8<br>n-2<br>(fsi+aP + foi+3h\ ( foi+69 + fei+sk)<br>föi+3P + fei+2h ) (foi+59 + feitak )<br>i=0<br>n-2<br>n-2<br>im0<br>n-2<br>n-2<br>Teit39+lei+2k<br>13<br>n-2<br>(fei+4P + foi+3h\ ( foi+69 + foi+sk)<br>П<br>Soi+3P + foi+2h/<br>%3D<br>Soi+54 + fos+ak ,<br>im0<br>n-2<br>fes-4p+ fei-sh<br>Joi+ap+Sai+ah<br>i=0<br>p+h<br>Jest39+Se+ak<br>n-2<br>n-2<br>n-2<br>foi+7p+S6i+ch<br>II (i+sp+Sei+7h<br>2p+h<br>pth<br>II<br>foitsp+fei+7h<br>S6i+7p+Sei+sh<br>Sei+ip+Seih<br>i=0<br>i=0<br>n-2<br>2p+h<br>pth<br>q II<br>n-2<br>Jei+s9+Sei+sk<br>föi+4P + fei+3h\ ( foi+69 + fei+5k\<br>Sei+3P + fei+2h ) \Sei+59 + foi+ak /<br>i=0<br>«II<br>n-2<br>feiszp+ feiteh<br>Sei+ip+Seih<br>i=0<br>2p+h<br>Jeitsp+S6i17h )<br>n-2<br>2p+h<br>pth<br>Sei+sp+ fei+zh<br>i-0<br>Ssi469+S6i+5k<br>Seitng+ Sastak<br>n-2<br>T fei+4P + fei+3h (fei+69 + fei+sk)<br>fei+3p -

Extracted text: Therefore n-1 ( fei+29 + fei+1k\ feip + fei-1h fei-1P+ foi-2h ) foi+19 + foik Iên-4 = hI i-0 Also, from Eq.(8), we see that I6n-526n-6 I6n-3 = X6n-6 + X6n-5 + *6n-8 n-2 (fsi+aP + foi+3h\ ( foi+69 + fei+sk) föi+3P + fei+2h ) (foi+59 + feitak ) i=0 n-2 n-2 im0 n-2 n-2 Teit39+lei+2k 13 n-2 (fei+4P + foi+3h\ ( foi+69 + foi+sk) П Soi+3P + foi+2h/ %3D Soi+54 + fos+ak , im0 n-2 fes-4p+ fei-sh Joi+ap+Sai+ah i=0 p+h Jest39+Se+ak n-2 n-2 n-2 foi+7p+S6i+ch II (i+sp+Sei+7h 2p+h pth II foitsp+fei+7h S6i+7p+Sei+sh Sei+ip+Seih i=0 i=0 n-2 2p+h pth q II n-2 Jei+s9+Sei+sk föi+4P + fei+3h\ ( foi+69 + fei+5k\ Sei+3P + fei+2h ) \Sei+59 + foi+ak / i=0 «II n-2 feiszp+ feiteh Sei+ip+Seih i=0 2p+h Jeitsp+S6i17h ) n-2 2p+h pth Sei+sp+ fei+zh i-0 Ssi469+S6i+5k Seitng+ Sastak n-2 T fei+4P + fei+3h (fei+69 + fei+sk) fei+3p - "oi+2h, foi+59 + foi+ak, 2p+h + pth 2p+h p+h fón -5p+Són -6h Sen-4p+ fen-sh i-0 n-2 Jei43p+Sei+2h i-0 J6i+59+S6i+ak n-2 ( fei+aP+ fsi+3h \ fsi+3P + fei+2h )fsi+59 + feitak, fei+69 + fei+sk\ 1+ fon-sp+S6n-sh Jén-4p+Sên-sh i-0 n-2 n-2 Jeitsa+ Seitak fei+4P + fei+3h ( fei+69 + foi+sk = 911(Fei+-3p + fei+2h ) \ foi+s9 + foi+ak, + fen-4p+ fen-sh+/en-sp+fon-sh Sen-4P+Sen-sh i=0 n-2 feit4p+fei+3h feisog+fei+sk n-2 П (foi+4P + fei+3h\ ( fei+69 + fei+sk) Soi+3P + foi+2h) ( fei+s9 + foi+ak, i=0 + Sen-ap+ fen-4h Jon-4p+Sen-sh i=0 n-2 foi+ap + fei+3h\ ( foi+69 + foi-sk foi+3p + foi+2h ) (foi+59 + fei-ak, q II fon-4P+ fon-sh 1+ \ fon-3p + fon-gh )| i=0 14
Brn-1In-2<br>YIn-1 + &xn-4<br>In+1 = a1n-2 +<br>n = 0, 1,...,<br>(1)<br>1<br>The following special case of Eq.(1) has been studied<br>In-1In-2<br>Int1 = In-2+<br>(8)<br>Tn-1 + In-4<br>where the initial conditions r-4, I-3, T-2, T-1,and xo are arbitrary non zero real<br>numbers.<br>Theorem 4. Let {zn}-4 be a solution of Eq.-(8). Then for n = 0, 1,2, ...<br>fep + fes-ih ( foi+29 + foiik<br>Jei-1p+ fei-zh)<br>fo419 + Sauk)<br>farq + Sai-1k<br>feirap + forah ) To-19 + foi-ak ,<br>(Sei+aP + fot+3h)<br>fei-2P + fei+1h (foi+19 + Sei+ak<br>= rT<br>fei+1P+ fesh ) Joi+39 + fei+2k )<br>(fei+ep + fes+sh\ (foi+29 + fei+ik<br>Soi-sp + feisah)<br>fei+ap + fei+ah\ ( feiseq + fei-sk<br>Sai+ap + fei+2h ) Jai459 + Seisak )<br>fei+19 + fask<br>2p +h<br>II ap+ fesch) (Tars9 + Suvzk,<br>foi+sP + fouth ( Seisa9 + Soirak<br>In+1 =<br>p+h<br>where r-4 = h, r-3 = k, z-2 = r, r-1 = P, 2o = q, {fm}-1 = {1,0,1,1,2, 3, 5, 8, .}.<br>Proof: For n -0 the result holds. Now suppose that n>0 and that our assumption<br>holds for n - 2. That is;<br>feirap + foi+ah<br>Jei+ap + fei42h) J6i-19 + fei-2k<br>fauq + foi-1 k<br>i-0<br>fai+1p + fesh ) fet439 + feirak)<br>Joi+ep + fei+sh (fei+29 + foi+zk<br>foi+sp + fes+ah)<br>Iom-6 = 9TT(fei-4p + foi+3h (fei+09 + fei-sk<br>+ fei+zh) \Torr39 + fei+ak ) *<br>(2p + h ( foi-sp+ fesuzh (foir49 + foi+ak<br>Ji+7p + Soisgh) Tausg + Soi+zk<br>p+h<br>Now, it follows from Eq.(8) that<br>IGn-4 = Iộn-7 +<br>11<br>feisep + fo+sh ( foi+29 + fe+ik<br>Sunsp + Seissh ) (Tus1g+ fesk)<br>= p||<br>•II )( )II( ) )<br>(foi+op + fou-sh ( fei-29 + fei+ikY<br>1foi+sp + foi+sh)<br>foi+19 + fosk<br>+ A<br>PIT fasop + foish) ( for-29 + Sousik<br>Joi4sp+fostah)<br>n-2<br>= p<br>Fei+sp + feirah)<br>feir19 + faik<br>pg<br>( foi+6P + fei+sh) ( fei+29 + fei-ik<br>=PlI(asp+ fash)( Far1q + Sak )<br>12<br>PII<br>´ fouvap + faunh\ ( fa-29 + feieik)<br>Sos+19 + Souk<br>PIIusp + Jourah)<br>1+ (<br>PII( ) )<br>-PT (furep + fouosh (fau29 + fuosk<br>Sei-sp + foi-gh )<br>fois19 + fuk)<br>n-2<br>PII( (unt<br>Jeusp + Sanah)<br>Sesig+ fauk<br>(An<br>( fesep + fursh ( fev29 + Jairak1+a+ fon-ek<br>- PII<br>Sen-o9 + fon-zk]<br>n-2<br>Sen-s9 + Son -ak-

Extracted text: Brn-1In-2 YIn-1 + &xn-4 In+1 = a1n-2 + n = 0, 1,..., (1) 1 The following special case of Eq.(1) has been studied In-1In-2 Int1 = In-2+ (8) Tn-1 + In-4 where the initial conditions r-4, I-3, T-2, T-1,and xo are arbitrary non zero real numbers. Theorem 4. Let {zn}-4 be a solution of Eq.-(8). Then for n = 0, 1,2, ... fep + fes-ih ( foi+29 + foiik Jei-1p+ fei-zh) fo419 + Sauk) farq + Sai-1k feirap + forah ) To-19 + foi-ak , (Sei+aP + fot+3h) fei-2P + fei+1h (foi+19 + Sei+ak = rT fei+1P+ fesh ) Joi+39 + fei+2k ) (fei+ep + fes+sh\ (foi+29 + fei+ik Soi-sp + feisah) fei+ap + fei+ah\ ( feiseq + fei-sk Sai+ap + fei+2h ) Jai459 + Seisak ) fei+19 + fask 2p +h II ap+ fesch) (Tars9 + Suvzk, foi+sP + fouth ( Seisa9 + Soirak In+1 = p+h where r-4 = h, r-3 = k, z-2 = r, r-1 = P, 2o = q, {fm}-1 = {1,0,1,1,2, 3, 5, 8, .}. Proof: For n -0 the result holds. Now suppose that n>0 and that our assumption holds for n - 2. That is; feirap + foi+ah Jei+ap + fei42h) J6i-19 + fei-2k fauq + foi-1 k i-0 fai+1p + fesh ) fet439 + feirak) Joi+ep + fei+sh (fei+29 + foi+zk foi+sp + fes+ah) Iom-6 = 9TT(fei-4p + foi+3h (fei+09 + fei-sk + fei+zh) \Torr39 + fei+ak ) * (2p + h ( foi-sp+ fesuzh (foir49 + foi+ak Ji+7p + Soisgh) Tausg + Soi+zk p+h Now, it follows from Eq.(8) that IGn-4 = Iộn-7 + 11 feisep + fo+sh ( foi+29 + fe+ik Sunsp + Seissh ) (Tus1g+ fesk) = p|| •II )( )II( ) ) (foi+op + fou-sh ( fei-29 + fei+ikY 1foi+sp + foi+sh) foi+19 + fosk + A PIT fasop + foish) ( for-29 + Sousik Joi4sp+fostah) n-2 = p Fei+sp + feirah) feir19 + faik pg ( foi+6P + fei+sh) ( fei+29 + fei-ik =PlI(asp+ fash)( Far1q + Sak ) 12 PII ´ fouvap + faunh\ ( fa-29 + feieik) Sos+19 + Souk PIIusp + Jourah) 1+ ( PII( ) ) -PT (furep + fouosh (fau29 + fuosk Sei-sp + foi-gh ) fois19 + fuk) n-2 PII( (unt Jeusp + Sanah) Sesig+ fauk (An ( fesep + fursh ( fev29 + Jairak1+a+ fon-ek - PII Sen-o9 + fon-zk] n-2 Sen-s9 + Son -ak-" Sei+ep + Sei+sh) ( Su-29 + Sai+ik [ Sen-sq + Sen-sk = PII(sp+ fursh)Tuer9+ feck ) [Ton-39 + Sen-sk] Therefore R-1 Also, from Eq.(8), we see that Tusap + Seurzli ) ( Jonnog + Senek ) ( )--II( )( ) 13
Jun 04, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here