Extracted text: There is no need for a detailed solution, just specify the correct answer. Thank you for answering this question! Time is limited! Correct answer is enough! Let z = g(x, y) = f(3 cos(xy), y + e#v) provided that f(3,4) = 7, f1(3, 4) = 2, f2(3, 4) = 3. i) Find g1 (0, 3). ii) Find g2 (0, 3). i) Find the equation of the tangent plane to the surface z = f(3 cos(xy), y + e²v) at the point (0, 3). O i) 9, ii) 3, iii) 9x + 3y - z = 2 O i) 9, ii) 3, iii) 9x - 3y - z = -12 O i) 9, ii) 9, iii) 9x + 9y + z = 20 O i) 27, i) 3, ii) 27x - 3y - z = -25 O i) -18, ii) 9, iii) -18x + 9y + z = -16 O i) 27, ii) -6, iii) 27x -6y - z = -16 O i) -9, ii) -6, ii) -9x -6y - z = 2 O i) -18, ii) 12, iii) -18x + 12y - z = 2