Theorem 1.6. For A# 1, Pk- (1.249) - 1 A - 1 (A – 1)2 Proof. Let F, be a function of k. Therefore AX*Fx = \k+1 Fi+1 – X* Fr xk+1 EF% – X* F. = X*(\E – 1)Fr. (1.250) - Now, set (AE – 1)F; = Pk;...

Explain the determaine
Theorem 1.6. For A# 1,<br>Pk-<br>(1.249)<br>- 1<br>A - 1<br>(A – 1)2<br>Proof. Let F, be a function of k. Therefore<br>AX*Fx = \k+1 Fi+1 – X* Fr<br>xk+1 EF% – X* F.<br>= X*(\E – 1)Fr.<br>(1.250)<br>-<br>Now, set (AE – 1)F; = Pk; consequently<br>F = (AE – 1)-1Pr.-<br>(1.251)<br>Therefore, from equation (1.250)<br>AX* F = X* Pr,<br>(1.252)<br>and<br>A-1* Px = \* Fx = X*(\E – 1)-'Px<br>k<br>1<br>= \*.<br>A(1+A)<br>-P:<br>- 1<br>1<br>(1.253)<br>A- 11+ XA/(A – 1)<br>P.<br>A- 1<br>A- 1<br>(A – 1)2<br>

Extracted text: Theorem 1.6. For A# 1, Pk- (1.249) - 1 A - 1 (A – 1)2 Proof. Let F, be a function of k. Therefore AX*Fx = \k+1 Fi+1 – X* Fr xk+1 EF% – X* F. = X*(\E – 1)Fr. (1.250) - Now, set (AE – 1)F; = Pk; consequently F = (AE – 1)-1Pr.- (1.251) Therefore, from equation (1.250) AX* F = X* Pr, (1.252) and A-1* Px = \* Fx = X*(\E – 1)-'Px k 1 = \*. A(1+A) -P: - 1 1 (1.253) A- 11+ XA/(A – 1) P. A- 1 A- 1 (A – 1)2

Jun 05, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here