The weights (in pounds) of 6 vehicles and the variability of their braking distances (in feet) when stopping on a dry surface are shown in the table. Can you conclude that there is a significant...


The weights (in pounds) of 6 vehicles and the variability of their braking distances (in feet) when stopping on a dry surface are<br>shown in the table. Can you conclude that there is a significant linear correlation between vehicle weight and variability in<br>braking distance on a dry surface? Use a =0.01.<br>Weight, x<br>Varlabillty in braklng<br>distance, y<br>Click here to view a table of critical values for Student's t-distribution.<br>5950<br>5330<br>6500<br>5100<br>5820<br>4800<br>1.73<br>1.92<br>1.95<br>1.61<br>1.65<br>1.50<br>Setup the hypothesis for the<br>i Data Table<br>Ho P = 0<br>Ha p 0<br>Identify the critical value(s)<br>(Round to three decimal pla<br>choice.<br>Level of<br>confidence, c<br>One tall, oa<br>Two talls, a<br>0.98<br>0.01<br>0.02<br>6.314 12.706 31.821 63.657<br>6,965<br>4.541<br>3,747<br>3.365<br>3.143<br>2.998<br>2.896<br>2.821<br>2.764<br>2.718<br>0.80<br>0.10<br>0.20<br>3.078<br>0.50<br>0.90<br>0.95<br>0.99<br>0.005<br>0.01<br>0.25<br>0.05<br>0.025<br>A The critical values are - to<br>d.f.<br>0.50<br>0.10<br>0.05<br>1.000<br>0.816<br>B The critical value is<br>9.925<br>1.886<br>0.765 1.638<br>0,7411.533<br>2.920<br>2.353<br>4.303<br>3.182<br>2.776<br>2.571<br>5.841<br>4.604<br>4.032<br>3.707<br>Calculate the test statistic.<br>2.132<br>0.727<br>1.476<br>2.015<br>(Round to three de<br>0.718 1.440<br>0.711<br>0.706<br>0.703<br>0.700<br>1.943<br>1.895<br>2.447<br>9.<br>7.<br>t3=<br>2.365<br>3.499<br>1.415<br>1.397<br>3.355<br>3,250<br>3.169<br>3.106<br>1.860<br>2.306<br>1.383 1.833 2.262<br>1.372 1.812 2.228<br>0.697 1.363 1.796 2.201<br>1.782<br>1.350 1.771<br>1.761<br>1.753<br>6.<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>3.055<br>3.012<br>2.977<br>2.947<br>2.921<br>2.898<br>2.878<br>2.861<br>2.845<br>2,681<br>2.650<br>2.624<br>1356<br>2.179<br>0,695<br>0.694<br>0.692<br>0.691 1.341<br>0.6901.337 1.746<br>0.689 1.333<br>0.688<br>0.688<br>0,687<br>0.686<br>0.686<br>0.685 1.319<br>0.685<br>0.684<br>0.684<br>0.684<br>0.683<br>0.683<br>0.674<br>2.160<br>2.145<br>2.131<br>2.120<br>2.110<br>2.101<br>2.093<br>2.086<br>2.080<br>2.074<br>1.714 2.069 2.500<br>2.064<br>2.060<br>2.056<br>2.052<br>2.048<br>2.045<br>1.345<br>1.740<br>1.734<br>1.729<br>1.325 1.725<br>1.721<br>1.717<br>2.602<br>2.583<br>2.567<br>2.552<br>2.539<br>2.528<br>2.518<br>2.508<br>1,330<br>1.328<br>2.831<br>2.819<br>2.807<br>2.797<br>2.787<br>2.779<br>2.771<br>2.763<br>2.756<br>1.323<br>1.321<br>1.711<br>1.708<br>1.706<br>1.703<br>1.701<br>1.699<br>2.492<br>2.485<br>2.479<br>2.473<br>2.467<br>2.462<br>2.326<br>1.318<br>1.316<br>1.315<br>1.314<br>1.313<br>1.311<br>1.282<br>29<br>1.645<br>1.960<br>2.576<br>Print<br>Done<br>

Extracted text: The weights (in pounds) of 6 vehicles and the variability of their braking distances (in feet) when stopping on a dry surface are shown in the table. Can you conclude that there is a significant linear correlation between vehicle weight and variability in braking distance on a dry surface? Use a =0.01. Weight, x Varlabillty in braklng distance, y Click here to view a table of critical values for Student's t-distribution. 5950 5330 6500 5100 5820 4800 1.73 1.92 1.95 1.61 1.65 1.50 Setup the hypothesis for the i Data Table Ho P = 0 Ha p 0 Identify the critical value(s) (Round to three decimal pla choice. Level of confidence, c One tall, oa Two talls, a 0.98 0.01 0.02 6.314 12.706 31.821 63.657 6,965 4.541 3,747 3.365 3.143 2.998 2.896 2.821 2.764 2.718 0.80 0.10 0.20 3.078 0.50 0.90 0.95 0.99 0.005 0.01 0.25 0.05 0.025 A The critical values are - to d.f. 0.50 0.10 0.05 1.000 0.816 B The critical value is 9.925 1.886 0.765 1.638 0,7411.533 2.920 2.353 4.303 3.182 2.776 2.571 5.841 4.604 4.032 3.707 Calculate the test statistic. 2.132 0.727 1.476 2.015 (Round to three de 0.718 1.440 0.711 0.706 0.703 0.700 1.943 1.895 2.447 9. 7. t3= 2.365 3.499 1.415 1.397 3.355 3,250 3.169 3.106 1.860 2.306 1.383 1.833 2.262 1.372 1.812 2.228 0.697 1.363 1.796 2.201 1.782 1.350 1.771 1.761 1.753 6. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 3.055 3.012 2.977 2.947 2.921 2.898 2.878 2.861 2.845 2,681 2.650 2.624 1356 2.179 0,695 0.694 0.692 0.691 1.341 0.6901.337 1.746 0.689 1.333 0.688 0.688 0,687 0.686 0.686 0.685 1.319 0.685 0.684 0.684 0.684 0.683 0.683 0.674 2.160 2.145 2.131 2.120 2.110 2.101 2.093 2.086 2.080 2.074 1.714 2.069 2.500 2.064 2.060 2.056 2.052 2.048 2.045 1.345 1.740 1.734 1.729 1.325 1.725 1.721 1.717 2.602 2.583 2.567 2.552 2.539 2.528 2.518 2.508 1,330 1.328 2.831 2.819 2.807 2.797 2.787 2.779 2.771 2.763 2.756 1.323 1.321 1.711 1.708 1.706 1.703 1.701 1.699 2.492 2.485 2.479 2.473 2.467 2.462 2.326 1.318 1.316 1.315 1.314 1.313 1.311 1.282 29 1.645 1.960 2.576 Print Done
Jun 10, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions ยป

Submit New Assignment

Copy and Paste Your Assignment Here