The wavelength of a particle λ is related to its momentum p by the formula λ = h/p, where h is the value of Planck’s constant. At nonrelativistic energies (less than about 10% of the speed of light), the momentum p is related to the kinetic energy E of a particle by the following formula: p = ( ) 2moE , where mo is the rest mass. In the case of a neutron, show that this expression reduces to λ = 2.86 × 10−9/ E , where λ is the wavelength of the neutron in centimeters and E is the kinetic energy of the neutron in eV. Using this formula, calculate the wavelength of a 4 MeV neutron.
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here