The U.S. Small Business Administration (SBA) was founded in 1953 on the principle of promoting and assisting small enterprises in the U.S. credit market. Small businesses have been a primary source of...

1 answer below »

View more »
Answered 1 days AfterMay 19, 2021

Answer To: The U.S. Small Business Administration (SBA) was founded in 1953 on the principle of promoting and...

Suraj answered on May 20 2021
154 Votes
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.naive_bayes import GaussianNB\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.metrics import accuracy_score\n",
"from sklearn.metrics import confusion_matrix\n",
"from sklearn.model_selection import cross_val_score\n",
"from sklearn.model_selection import GridSearchCV"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
SelectedLoanNr_ChkDgtNameCityStateZipBankBankStateNAICSApprovalDate...ChgOffPrinGrGrAppvSBA_AppvNewRealEstatePortionRecessiondaystermxxDefault
001004285007SIMPLEX OFFICE SOLUTIONSANAHEIMCA92801CALIFORNIA BANK & TRUSTCA53242015074...03000015000000.50108016175.00
111004535010DREAM HOME REALTYTORRANCECA90505CALIFORNIA BANK & TRUSTCA53121015130...03000015000000.51168017658.00
201005005006Winset, Inc. dba Bankers HillSAN DIEGOCA92103CALIFORNIA BANK & TRUSTCA53121015188...03000015000000.50108016298.00
311005535001Shiva ManagementSAN DIEGOCA92108CALIFORNIA BANK & TRUSTCA53131215719...05000025000000.50108016816.00
411005996006GOLD CROWN HOME LOANS, INCLOS ANGELESCA91345SBA - EDF ENFORCEMENT ACTIONCO53139016840...0343000343000011.00720024103.00
\n",
"

5 rows × 35 columns

\n",
"
"
],
"text/plain": [
" Selected LoanNr_ChkDgt Name City State \\\n",
"0 0 1004285007 SIMPLEX OFFICE SOLUTIONS ANAHEIM CA \n",
"1 1 1004535010 DREAM HOME REALTY TORRANCE CA \n",
"2 0 1005005006 Winset, Inc. dba Bankers Hill SAN DIEGO CA \n",
"3 1 1005535001 Shiva Management SAN DIEGO CA \n",
"4 1 1005996006 GOLD CROWN HOME LOANS, INC LOS ANGELES CA \n",
"\n",
" Zip Bank BankState NAICS ApprovalDate ... \\\n",
"0 92801 CALIFORNIA BANK & TRUST CA 532420 15074 ... \n",
"1 90505 CALIFORNIA BANK & TRUST CA 531210 15130 ... \n",
"2 92103 CALIFORNIA BANK & TRUST CA 531210 15188 ... \n",
"3 92108 CALIFORNIA BANK & TRUST CA 531312 15719 ... \n",
"4 91345 SBA - EDF ENFORCEMENT ACTION CO 531390 16840 ... \n",
"\n",
" ChgOffPrinGr GrAppv SBA_Appv New RealEstate Portion Recession \\\n",
"0 0 30000 15000 0 0 0.5 0 \n",
"1 0 30000 15000 0 0 0.5 1 \n",
"2 0 30000 15000 0 0 0.5 0 \n",
"3 0 50000 25000 0 0 0.5 0 \n",
"4 0 343000 343000 0 1 1.0 0 \n",
"\n",
" daysterm xx Default \n",
"0 1080 16175.0 0 \n",
"1 1680 17658.0 0 \n",
"2 1080 16298.0 0 \n",
"3 1080 16816.0 0 \n",
"4 7200 24103.0 0 \n",
"\n",
"[5 rows x 35 columns]"
]
},
"execution_count": 88,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df=pd.read_excel(\"C:/Users/Hp/Desktop/data.xlsx\")\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {},
"outputs": [],
"source": [
"df.shape\n",
"df=df.drop([\"LoanNr_ChkDgt\",\"Name\",\"City\",\"State\",\"Zip\",\"Bank\",\"BankState\"],axis=1)\n",
"df=df.drop([\"RevLineCr\",\"LowDoc\",\"ApprovalDate\",\"ApprovalFY\",\"DisbursementGross\",\"DisbursementDate\",\"NAICS\"],axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"
SelectedTermNoEmpNewExistCreateJobRetainedJobFranchiseCodeUrbanRuralChgOffDateBalanceGross...ChgOffPrinGrGrAppvSBA_AppvNewRealEstatePortionRecessiondaystermxxDefault
003611.00010NaN0...03000015000000.50108016175.00
115611.00010NaN0...03000015000000.51168017658.00
2036101.00010NaN0...03000015000000.50108016298.00
313661.00010NaN0...05000025000000.50108016816.00
41240651.036511NaN0...0343000343000011.00720024103.00
\n",
"

5 rows × 21 columns

\n",
"
"
],
"text/plain": [
" Selected Term NoEmp NewExist CreateJob RetainedJob FranchiseCode \\\n",
"0 0 36 1 1.0 0 0 1 \n",
"1 1 56 1 1.0 0 0 1 \n",
"2 0 36 10 1.0 0 0 1 \n",
"3 1 36 6 1.0 0 0 1 \n",
"4 1 240 65 1.0 3 65 1 \n",
"\n",
" UrbanRural ChgOffDate BalanceGross ... ChgOffPrinGr GrAppv SBA_Appv \\\n",
"0 0 NaN 0 ... 0 30000 15000 \n",
"1 0 NaN 0 ... 0 30000 15000 \n",
"2 0 NaN 0 ... 0 30000 15000 \n",
"3 0 NaN 0 ... 0 50000 25000 \n",
"4 1 NaN 0 ... 0 343000 343000 \n",
"\n",
" New RealEstate Portion Recession daysterm xx Default \n",
"0 0 0 0.5 0 1080 16175.0 0 \n",
"1 0 0 0.5 1 1680 17658.0 0 \n",
"2 0 0 0.5 0 1080 16298.0 0 \n",
"3 0 0 0.5 0 1080 16816.0 0 \n",
"4 0 1 1.0 0 7200 24103.0 0 \n",
"\n",
"[5 rows x 21 columns]"
]
},
"execution_count": 90,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {},
"outputs": [],
"source": [
"df[\"xx\"].fillna(np.mean(df[\"xx\"]), inplace = True)\n",
"#df[\"DisbursementDate\"].fillna(np.mean(df[\"DisbursementDate\"]), inplace = True)\n",
"df[\"NewExist\"].fillna(np.mean(df[\"NewExist\"]), inplace = True)\n",
"df[\"ChgOffDate\"].fillna(np.mean(df[\"ChgOffDate\"]), inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 2102 entries, 0 to 2101\n",
"Data columns (total 21 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Selected 2102 non-null int64 \n",
" 1 Term 2102 non-null int64 \n",
" 2 NoEmp 2102 non-null int64 \n",
" 3 NewExist 2102 non-null float64\n",
" 4 CreateJob 2102 non-null int64 \n",
" 5 RetainedJob 2102 non-null int64 \n",
" 6 FranchiseCode 2102 non-null int64 \n",
" 7 UrbanRural 2102 non-null int64 \n",
" 8 ChgOffDate 2102 non-null float64\n",
" 9 BalanceGross 2102 non-null int64 \n",
" 10 MIS_Status 2102 non-null object \n",
" 11 ChgOffPrinGr 2102 non-null int64 \n",
" 12 GrAppv 2102 non-null int64 \n",
" 13 SBA_Appv 2102 non-null int64 \n",
" 14 New 2102 non-null int64 \n",
" 15 RealEstate 2102 non-null int64 \n",
" 16 Portion 2102 non-null float64\n",
" 17 Recession 2102 non-null int64 \n",
" 18 daysterm 2102 non-null int64 \n",
" 19 xx 2102 non-null float64\n",
" 20 Default 2102 non-null int64 \n",
"dtypes: float64(4), int64(16), object(1)\n",
"memory usage: 345.0+ KB\n"
]
}
],
"source": [
"df.isnull().values.any()\n",
"df.info()"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"G:\\Anaconda\\lib\\site-packages\\sklearn\\utils\\validation.py:73: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
" return f(**kwargs)\n"
]
}
],
"source": [
"from sklearn.preprocessing import LabelEncoder\n",
"var=LabelEncoder()\n",
"df[[\"MIS_Status\"]]=var.fit_transform(df[[\"MIS_Status\"]])"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [],
"source": [
"target=df[\"Selected\"]\n",
"ind_var=df.iloc[:,1:]"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {},
"outputs": [],
"source": [
"x_train,x_test,y_train,y_test=train_test_split(ind_var,target,train_size=0.60,random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [],
"source": [
"std_scale=StandardScaler()\n",
"x_train1=std_scale.fit_transform(x_train)\n",
"x_test1=std_scale.fit_transform(x_test)"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The optimal value of k is 4\n"
]
}
],
"source": [
"k_value=[i for i in range(1,10)]\n",
"k_score=[]\n",
"for k in k_value:\n",
" knn=KNeighborsClassifier(n_neighbors=k,n_jobs=1)\n",
" cv_score=cross_val_score(knn,x_train,y_train,cv=5,scoring=\"accuracy\")\n",
" k_score.append(cv_score.mean())\n",
"optimal_k=k_score.index(max(k_score))\n",
"print(\"The optimal value of k is %d\" %optimal_k)"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The accuracy for KNN model is 0.526754\n",
"confusion matrix is\n",
"[[307 118]\n",
" [280 136]]\n"
]
}
],
"source": [
"#KNN\n",
"knn=KNeighborsClassifier(n_neighbors=4)\n",
"knn.fit(x_train,y_train)\n",
"y_pred=knn.predict(x_test)\n",
"print(\"The accuracy for KNN model is %f\" % accuracy_score(y_test,y_pred))\n",
"scores=cross_val_score(knn,x_train,y_train,cv=5)\n",
"print(\"confusion matrix is\")\n",
"print(confusion_matrix(y_test,y_pred))"
]
},
{
"cell_type": "code",
"execution_count": 99,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3RURRvH8e/sbhpJCL2G0Lv03qQpICBdaVKUKk2wAIK+YkdFRQRButhAQKSDCAaQ3nsLPaGGkkY2ye7O+8fGkCWhms2mPJ9zPLJz59777D2QX26bUVprhBBCiPsxuLoAIYQQaZsEhRBCiAeSoBBCCPFAEhRCCCEeSIJCCCHEA0lQCCGEeCAJCpGuKKUClFKRSiljCm83UCnVNyW3+Qj7rKeUOhX/fdql5r6FeBwSFCLVKaW6KKV2KKWilFLX4v88SCmlHrau1vqC1tpHa21NjVqflFJqrlLqo4d0+wCYHP99/kjpfSqlyiulLiul3oj/fE4pdVUp5Z2oT1+lVGCiz1opdUgpZUjU9pFSau5/rU+kXxIUIlXF/9D6BvgCyAfkBQYC9QB3F5aWYh7jbKcwcOQJ92F6yPLKwN/Ax1rrLxMtMgGvPWTzBYAuT1KXyJgkKESqUUr5Yf8tepDWepHWOkLb7dNad9dax8T3a6WU2qeUCldKXVRKjUu0jSLxv/Wa4j8HKqU+VEptUUpFKKX+VErlekANbZVS++O3fVop1SLR4sL3245SaqFS6opSKkwptUkpVT7RsrlKqalKqVVKqSigD9AdGBl/WWl5MnWcBooBy+P7eCilCiillimlbiqlgpRS/RL1H6eUWqSU+kkpFQ70fsB3rAn8BYzRWk++Z/EXwJtKqWz3Wx/4HHj/YWEkMg8JCpGa6gAewNKH9IsCegLZgFbAqw+5ht8NeBnIg/2s5M3kOsX/AJ0HvBW/7aeBc4+4ndVAyfhle4Gfk6nhY8A3fh8/A5/HX1Z6/t5atNbFgQvA8/F9YoBfgWDsv9F3Aj5RSjVNtFpbYFF87ffu/181gTXACK31zGSW7wYCuc8xivc78MAwEpmLBIVITbmAUK215d8GpdRWpdRtpVS0UuppAK11oNb6kNbaprU+iP0HaMMHbHeO1vqk1joa+A2ofJ9+fYDZWut18dsO0Voff5TtaK1nx58BxQDjgErxZ0j/Wqq13hK/XfMjH5G7x6EQUB8YpbU2a633AzOBHom6bdNa/xG/j+j7bKo2EIY92O7nf8BQpVTu+yzXwLvA/5RSHo/1RUSGJEEhUtMNIFfiSxpa67pa62zxywwASqlaSqm/lVLXlVJh2O9h3PdyEnAl0Z/vAD736VcIOP2421FKGZVS4+MvVYVz9ywkcU0XH7DdR1EAuKm1jkjUdh4o+Jj7mALsAtYppbIn10FrfRhYAYy+30a01quwn/H0f4R9igxOgkKkpm1ADPZLKA/yC7AMKKS19gOmAQ99IuoRXASKP8F63bDX/AzgBxSJb09c073DMD/usMyXgBxKKd9EbQFAyGNu04r9/sgFYK1SKut9+r0H9MMxiO71DjAWyPII+xUZmASFSDVa69vA+8B3SqlOSikfpZQh/gkd70RdfbH/dm2Ov6/QLYVKmAW8rJRqGr/fgkqpMo+wni/2gLuB/YfmJ4+wzlXsN6sfidb6IrAV+FQp5amUqoj9Utn97kU8aFtxwAtAKLAq8eOwifoEAQuAYQ/YTiBwCOj1uDWIjEWCQqQqrfXnwOvASOAa9h+o3wOjsP+gBBgEfKCUisB+Pf23FNr3Tuw3q7/Gfh1/I/ZHVB9mHvbLQCHAUWD7I6wzCygXf//lUd+R6Ir9bOUSsAR4T2u97hHXdaC1jgU6AGbsT1Z5JdPtAxwDOjnvADmepAaRcSiZuEgIIcSDyBmFEEKIB3JaUCilZscPz3D4PsuVUmpS/ItFB5VSVZ1VixBCiCfnzDOKuUCLByx/DvsLTCWxP4I31Ym1CCGEeEJOCwqt9Sbg5gO6tAXmxQ/hsB3IppTK76x6hBBCPBlXjuVSEMcXiILj2y7f21Ep1Z/4F388PT2rBQQEpEqBaZ3NZsNgkNtMIMciMTkWd2W2Y6GBm9E2dFw0vtzBKy6Mc2E2Yiyg7aMi3O9t/AdyZVAk9wJVso9gaa2nA9MBSpcurU+cOOHMutKNwMBAGjVq5Ooy0gQ5FnfJsbgrMxyLyBgLFquNH7ae59CGX5nsNglLXCzvbIhh0g4bGiiV08DJG7bzT7oPVwZFMPYhFf7lj/35cSGEEA9htWmGzd/HyoP2izBtDFuY6T6Fdact9F8RzbnbGqOCkfXcadeyKbXGPGj4rwdzZVAsA4YopeYDtYAwrXWSy05CCCEcHb0UzuBf9nI2NArQfGqaSVfT3+y+ZKXZT3cAqFzAg1lvd6Nq865Q8lkY8+Sj4DgtKJRSvwKNsA8CF4x9bBk3AK31NGAV0BIIwj4A28vOqkUIITKCGIuVwT/v469jV/Ekhpluk3jGuC9hefUCRrpW9KBCqwG8+f4E3NzcUmS/TgsKrXXXhyzXwGBn7V8IITKSizfv0GhCIFabJidhrPEYhS3qNl3Xmhldz4NK+ewTK/68eCWqRNOHbO3xyAxWQgiRxgVdi6TVpM1YbZqsRLLMfQyrD4YyfI2ZW2a4HKEJfK8ZvPQ7ys0zxfcvQSGEEGnYH/tCGL5gPwAexPL1nXfpsyiYtaetADQvl43vF/wJT9VwWg0SFEIIkQZFx1rp88Mutp6+AYCHjqbLwSG023CVyFjI7glf929Kz6/WooxGp9YiQSGEEGnMkn3BjFhwAIDshJNThfNi9ELeiA+JTuVMfDv2VfJ1m5Qq9UhQCCFEGrL8wCVGLDiACQuTjV/RzLQPg1LgAR7PeeLroejQphV0/jLVapKgEEKINGLWP2f5aMVh+hjX0Dr0B/osi+ZMVXcG1XAHoFdld6jYBdpPA5USswM/GgkKIYRwof0Xb3P5djQht6P5fOVBfjZ8wIpNR6ixJRarhmm7YxlQzQ1jntJQsBq0+jJVQwIkKIQQwmVmbj7DRyuPAVCAUKZfHcory6M4ccOGAobVdOfjzpUwvroWvLK7rE4JCiGEcIGtp0P5ZJU9JIxxUQRsfpMmuyLQQJlcBmZ1yE7dsSsgoLZrC0WCQgghUt3B4Nv0nLUTpa18bppJB/dAagVHYTTAqHruvNOlDp59V4K7t6tLBSQohBAi1VisNn7deYF3lx6hsnkPrxkX0tjzAqCY186LOBtU7jke6g5xdakOJCiEEMLJwsLDuHZwHWcCf6Z67Cm+PHOGwavMmAKMNH4xCwDl8xihyktQJ+0NgSdBIYQQThIZY+HH35fx6omX8QN8ImwMWW3m92MWAK5FaSJjNT4l6kH338DD17UF34cEhRBCpDBznJWJf51i0ca9rPR4G41m7v44Xv/TzG0z+LjD5894MqC6G4Z6r8HTb6XZkAAJCiGESFFnQ6Po8N0Wwu7E8KPbZHLpW7T89Q5rguyD+DUol59506dQpFwV8AuAdDCntwSFEEKkgMAT11i2/xK/7wvBCzNL3T+gguEcoCiby8jOa158M2Uq3bt3R6XyC3P/lQSFEEL8R9tO3+CVuTvpaNjI56YTVLi1gZvRGgLsP2I/fGc0o2sMJk+ePC6u9MlIUAghxGOyWG3M2HyWS7ejAVh9+DIvG1Yz2vAjn2+JpcemGPJ6K44M8sG3bGO8n/sf3gbnDgXuTBIUQgjxGEIjY2j65UbCouMS2kaa5lPr+hJqLIvmwFUbAM2Lm9D+NaHbb5COQwIkKIQQ4pGtO3qVV3/ag8WmE9paWDdx4Z/fGLbVPohf0ZwezPhoOE0bN4KSzdLFzeqHkaAQQoiH+OdUKIN/2etwFgHQIPstTn4/kb/PxqKAEbU9+HDhXrz9y7mmUCeRoBBCiPuw2TTDF+xn2YFLSZaNq+dB7wNvsLK2kauRBma9VJzan+wCTz8XVOpcEhRCCJGMOKuNV+buYvOpUIf26NO76GVYR2/PwwC0KuVG81LemAYsypAhARIUQgiRRLg5jjbf/sO5G3cS2qx3wgg4uZCta//gSwXd+3tTKZ/9JrXp+QmQv6KrynU6CQohhIi3JSiUsUsOOQSE1pr8N/dxZum3bL1+HU8TfNjYg/J54m9SNxwNVXu6qOLUIUEhhBDA52uO813gaYc2S8QNzBuns+PIFgAaFjYys40XJXIYwOQJg7ZDjqKuKDdVSVAIITKtm1GxvLnwAH+fuIbWSZd7H5hPyJEt+LrDhGae9K3qhkEpyOoPg7aBZ9bUL9oFJCiEEJnSrahYWk3azOUws0O71ppPO1SkQ9WC3Nxn4Y0+f/HFsx74Z42/1JSzJAzYmGZmn0sNEhRCiEwl3BzHiPn7WX/8mkO7tlnxOvkneW8fofMnf2G8c50Cfw/n145edzsVb2J/09rolspVu5YEhRAi04iMsSR5mgngmXwx7Pt5PHt37+IEsPr9jrQ2/O24coeZUKETpLORX1OCBIUQIlPQWjNy0QHHJ5qscQRc/JN5X80kLi6OgvnzMrVh+D0hoaD7Iij5TOoXnUZIUAghMjytNWOWHGLVoSsJbaWNV7m4/Cv+OXoEgAF9+/BZmYP4RZxwXLnZR5k6JADS/2hVQgjxAP+GxK87Lya09axTmFZ5Izl29AjFixdnw+K5TCu/wzEkClSFwbug7hAXVJ22yBmFECLD2nAhjlGfrudqeAxgf7u6epnCvNOqHEZVFq01/VpVJ8uv7cAae3fF5ydBtV4uqjrtkaAQQmQoIbej+XzNcXafu0XIbfsPf1tMFLcC53Dn2Cbe23cAd5MBrp/gtVKX4KeWjhuo1DXDv2n9uJwaFEqpFsA3gBGYqbUef89yP+AnICC+lgla6znOrEkIkTFprfnz6FUG/LjHof3O6V3cXDMZa+QN3NzcOPHzaCrnOAbhwUk3UmcINP1fpnyy6UGcFhRKKSMwBXgWCAZ2KaWWaa2PJuo2GDiqtX5eKZUbOKGU+llrHZvMJoUQIomoGAuT/w5ixqYzDhMKWe+EcXP9dO4c3QhAjZo1mdOtMOVvrYXwZDbUdT6Ufi6Vqk5fnHlGURMI0lqfAVBKzQfaAomDQgO+SikF+AA3AYsTaxJCZBCRMRa++eskMzafTbIs+swewtd8jTniNl5eXnw8sA3D8u3FeOt40g2VbQMN3oAClVOh6vTJmUFRELiY6HMwUOuePpOBZcAlwBforLW23bshpVR/oD9A7ty5CQwMdEa96U5kZKQci3hyLO7KyMdCa01EHFyLsvHRDnOyfUwG6F0jDxMWh1O1fCnmtlZU8FwNid6xsxrcOfzUWML8ymEzusPJ23AyMHW+RDrkzKBI7iLfvcNuNQf2A02A4sA6pdRmrbXDiaHWejowHaB06dK6UaNGKV9tOhQYGIgcCzs5Fndl1GNhjrPyytxdbD19I8kyrW3kjzzF16/3onaxHKgTq3khrBrVjMdR995vKFAF48urqeTmlWQ7InnODIpgoFCiz/7YzxwSexkYr7XWQJBS6ixQBtjpxLqEEOlMWHQcbSb/w/l7ht4AKOMVxdVVk9ixcwtX/Y+i8obAha1UN4HD76vuvtDheyjWGCQkHoszg2IXUFIpVRQIAboA3e7pcwFoCmxWSuUFSgNnnFiTECId0VoTHWel95ydDiGR09sdXzcb1U58x9RfVxEdYyG3twHDwV+gdDID9tUdCk+PzDTDgqc0pwWF1tqilBoCrMX+eOxsrfURpdTA+OXTgA+BuUqpQ9ijf5TWOvS+GxVCZBrHLofT94fdhNyOdmjvUDk/L7ttoM+Id/nqov0+xUsV3ZjY3IOcWRwHmzhVoi8l248B75ypVndG5NT3KLTWq4BV97RNS/TnS0AzZ9YghEhftNbM33WRt38/5NBeWQXRO08QnitmU+3XO8TZwD+r4vvWnrQsmegswrcANHwLSj1HyN4TlJSQ+M/kzWwhRJqx+dR1esxyvEXZ2fg375p+xEeZIQwiA4z4Z1W0KGFi/DOeZM3qB/WHAwp88kLFzmD890fbiST7EI9PgkII4XJxVhvTN53hi7X2H+wKG/UMR3jLtIASltNM2BjLG3Xd8XFX+LgrDgz0wdfHx/4WdfWXweTh4m+QsUlQCCFcxmrTjPn9EAt2X3RoH2f6gV6mdWw4a6HD8mjO3NLciNZMes4TqryEb6kWUPZ5F1Wd+UhQCCFSzcHg24xcdJDQSPsoPaGRMUn6dDRtpa3lT/qtMjNzXxwAlfIa6PXBPGj2oozD5AISFEKIVLHn/E06TduGvve123g+3KF71oOUP/Q15VeauRShcTfC/7o/zcjvluLmnS11CxYJJCiEEE737fpTfLnu5H2X18sRzjzeZe+pK9Scb38ctk4Rb2b9EUjZStVTq0xxHxIUQginWnbgkkNIKAXfv1SNygH2MwSvm8fxnWN/F7dGQSOvVHajUgFPBs/YgrFABZfULBzJVKhCCKc5dTWC0YsPOrR90akSzcrnI4+vJzHBR3mpZX32XrYmLJ/VvwbDJv4uIZGGyBmFECLFbT9zg6/WnWTn2ZsJbbl9PVjzWgNy+nhgs9n4fup3jHpzBBFmC+F3jPzdyxtafQU1+riwcpEcCQohRIq5HBbN0F/2sfv8LYd2LzcjP/WpRU4fD06ePEm/vn3YtPkfANqXMTGlpSc8+6GERBolQSGE+M9iLTYW7QlmzJJDSZYZDYovXqhI8VxefP5WX96b9APmWAt5vRVTWnrSsZwbNHob6g1zQeXiUUhQCCGe2OnrkXyx5gRrjlxJdvkbz5biheqFyBdxmJAxlfhoUijmWOhVyY2vmnuSw0tB8Sbw9FupXLl4HBIUQojHdvtOLKMXH7pvQPSsU5hRLcpgworp8l6Y24KCWeD71l5k97KP0wSAf03o/DMYjKlYvXhcEhRCiMey/+Jt2k3ZkuyyPL4evPd8eVpVzM+2lb/Qp29fBlSy8Vpt+1hMXSu42ScQqtbLPld1wL2zI4u0SIJCCPFQMRYru8/d4ss/T7D3wu0ky7vUKMTL9YpSOp8vkZGRDO/yDJMWrEcD85SBobXcMSgFnX+SMZrSIQkKIUSyQiNj2HP+Fr/vDWbtkavJ9mlaJg+fdapILh/7GcO6devo/0pPzgVfwahgZD13/tfQwx4Sz0+SkEinJCiEEA601oxafJDfdgc/sN/YlmXp93QxAKKiohg2bBizZ88GoHI+A7PbeFElvxFqD7YPB+7m6fTahXNIUAghEgRdi2DIL/s4fiUi2eX+2b1oVi4frzUtiV+Wu7PKeXp6cnjvDjxMMK6hB2/UccfNIwu8ugVyFk+t8oWTSFAIIQBYd/Qq/ebtTtJePLc3zcvno3ONQhTO6Z3QfuWK/YmnfPnyYYwJY16LWKjnTelc8U8wvbRYQiKDkKAQQrD3wi0G/bzHoa1KQDbm96+Nh8nx0VWtNfPmzWPEiBE0aNCAP+ZNRX1Xi9Ie4eAR37fXCihSL7XKF04mQSFEJrc1KJRuM3c4tPWqU5i3WpRJEhLnz59nwIABrF27FoCY8FDufFYGb/dEkwl1+QWKNnB63SL1SFAIkUmZ46y8MncXW0/fcGif0bM6z5bL69Bms9mYOnUqo0ePJjIykuzZszNxRGd6WH5GJZ5xrt5rUKZVapQvUpEEhRCZ0LUIMy2/2ZwwJem/5rxcg8al8zi0Wa1WnnnmGQIDAwHo1KkTk8f0Je/y7o7TklZ+CZ5539mlCxeQoBAik4kwx9H5++1JQuKbLpWThASA0WikZs2aHD9+nCmTJ9OhlIbFLzp2avYx1B3izLKFC0lQCJGJaK15a+FBzoZGJbRVKpSNBf1r4+l2937Evn37uH37No0bNwZg3LhxjO7biewL28GhyLsb9PCDARshR9FU+w4i9UlQCJFJWG2aQT/vcXjL+sXq/ozvUBGDwX4JyWw288EHH/D555+TN29ejq6Zg5+bBa/b5/FaMzrpRttPlZDIBCQohMgE7sRa6Dh1G8cuhye09a5bhHFtyid83rJlC3369OHEiRMoBS8UCsX0aydI/ERTYi/+KDeuMwkJCiEysPM3oli4O5jJfwc5tFcNyMaYlmUBiIiIYMyYMUyZMgWtNWVzGZjVxpM6he7z46HuUPtsdOo+ASIyHAkKITKgGIuVmZvP8sXaE0mWFczmxezeNXA3GQBo3aoVmzZvxmSA0fXdeedpDzxMiUJAGaFkMzC6QZUeUKpZan0NkUZIUAiRwVhtmr4/7GbzqdAky54pm4cp3aviEXoU/poO5nDeDthDVH4Ds9p4USlfohfsSjwLtQZCiaZy9pDJSVAIkUFYbZoJf55gauAd4I7Dsmbl8tK7bhHq+lxh0dvNObb7H95taB8avEUJE82Ke9uHAgeoMwQajwX3LKn8DURaJUEhRDpnjrNyMDiMqYFB/H3iusOyfFk9+b7bU1TyCefyz93o+P3f/H7MggLalDYlnEEYlIIcxewTC+Utn8xeRGYmQSFEOnY13Mzz3/7DtYiYJMteLR7KyFvvw5xQ5uyP4/U/zdw2g687fP6sJxXyGqDmAPCvDjlLQMGqLvgGIj2QoBAinbp48w5Nv9pIrMXm0J4vi2JR45v4rx/G2Vs2+q+I5q8zVgCeK2Hi+9aeFGraF2r0g7zlXFG6SGecGhRKqRbAN4ARmKm1Hp9Mn0bARMANCNVaN3RmTUKkZ1pr9l64zewtZ1l58LLDslw+HrQvZmPYxdfxXX8RgHf/juGvM1Zyeim+eT4H3bq+iGr2EWTJ4YryRTrltKBQShmBKcCzQDCwSym1TGt9NFGfbMB3QAut9QWlVNKBZoQQCT5YcZQ5W84laR/WpASvNykKc1pgjboA8W9aT2jmgUeRmnw683fy5JF/XuLJOPOMoiYQpLU+A6CUmg+0BY4m6tMN+F1rfQFAa33NifUIkW4t2RfMtxuCOHM9Ksmyj9qW56XsR4h7vyafbYlhdZCFjb2zYDK5kW/AAmaVfMYFFYuMxJlBURC4mOhzMFDrnj6lADelVCDgC3yjtZ5374aUUv2B/gC5c+dOGO44s4uMjJRjES8jH4sNF+KYdzQ2SXvjQiYaFzJR//jH7Nn2K68si+bgVfv9ih8j61P0+bcgREFIYCpXnHZk5L8XqcmZQZHcGzo6mf1XA5oCXsA2pdR2rfVJh5W0ng5MByhdurRu1KhRylebDgUGBiLHwi6jHQtznJUtQaF8suoYp687hkSZfL4sfrUu3h4mog8sZdxn85iwLRabhmLZFZ+/VIOOX66Ul+TIeH8vXMWZQREMFEr02R+4lEyfUK11FBCllNoEVAJOIkQmEhVjIc5qQ2v44s8T/LLjQpI+7kYDn3SoQPPyefH2MLF51UL69OzGqRsWDAper+3OB+O/ZJetvISESFHODIpdQEmlVFEgBOiC/Z5EYkuByUopE+CO/dLU106sSYg0RWvNu0sP89P2pMFwr9XDG1A8t4/9w7VjHJrSk1M3LJTPbWBW1wBqfbIbvHOCXGoRKcxpQaG1tiilhgBrsT8eO1trfUQpNTB++TSt9TGl1BrgIGDD/gjtYWfVJISrWW2aWIuN33Zf5FJYNFfDzPyx/94T7bsCcmThhWr+9G9YDA+TkeDgYPzNJ+CnDgys7oabAXpV8cK93wJ7SAjhBE59j0JrvQpYdU/btHs+fwF84cw6hHC1Q8FhvLXoAKeuRWK13Xurzs7b3YjJaMCgwD97Fr7vUY0C2bwACA0Npc+wIfyxZDFHBnhSOJsBg1L0q+YOz30KhWqm5tcRmYy8mS2Ek3217iST1p96YJ9K/n4sGFDHYTpSsF+a+m3mRIa+NZbrYdF4mWDvZSuFs9mHCKfpe1BrgLNKFwKQoBDCqZYduJRsSHi5GSmUw4t2VQri62GibZWCSULi0qVLDOr2PEs37gWgUREjM573okSO+JB4YS6Ub+/sryCEBIUQznLqagSjFx90aBvWtCRDGpdImDTofpYtW0bPbi8SFhVDVg/44llP+lZ1s4/y6l8D2k2DXCWcWb4QCSQohHCCCHMcA37aw51Y+2B8RXN5s3RIPbJ6ut1/pTs34a/3IGgDRU6dJyo6htalTExt5Yl/VgNU7g61X4V8FVLpWwhhJ0EhRArTWjNy0cGE4Ta83IxMe6naA0PCemoDy99tTdvSJpRSVMxrZN8Ab8rnNqAMRnjtAGQLSK2vIISDB5//CiEeWVSMhUV7gqk47k9WH76S0D6+YwVK5/O973pHtq6lXtPnaL8gmkVHLQntT+UxogpWhdEXJCSES8kZhRD/0cqDl5m0/hQnrkYkWdarTmHaVi6Y7HqxsbGM//gjPvr4I+KsmoK+iqweCgrXh+Yf28PBK7u8ZS1c7pGDQilVECiceB2t9SZnFCVEerH3wi2GL9hHnDXpuxGVC2VjbKvkJwbatWsXfV7uzaEj9sGUB1Rz47NnPPHrvxyKyZQsIm15pKBQSn0GdMY+RLg1vlkDEhQi01p39Cr95u1O0l4yjw9dawbwcr0iqGTOBlasWEHbtm2x2WwUz66Y2caLRkVM8NwXEhIiTXrUM4p2QGmtddKJeYXIhKZtPM341ccTPnuYDMzqVYOnCmYlWxb3B67bpH4tSuTyoE1xK+839iCLm4IKL0LNfs4uW4gn8qg3s89gn6pUiExv1aHLDiEBML1ndeqXzJVsSISFhTFq1CjCw8NBa7KsfZ0D/Ux80czTHhLlO0D77+VehEizHvWM4g6wXym1Hkg4q9BaD3NKVUKkQVExFt754zBL9oU4tC8aWIfqRZKfg3rFihUMHDiQkJAQIiMjmdK1BBxbhqcpPhSKNYaOM8EgDyCKtOtRg2JZ/H9CZEpaa9747QBrjtx97DWrp4lVrzXAP3uWJP2vX7/Oa6+9xq+//gpArepVGZRtE/z1091O/jWh2wIwGJOsL0Ra8khBobX+wdmFCJGWzdh8xiEkvNyM/Nq/dpKQ0Frz66+/MmzYMG7cuEEWL08+bubH0IqnMBoSXVoqUBV6rwCTR2p9BSGe2AODQin1m9b6RaXUIZJOY4rWuqLTKhMiDdBa88XaE3wXeDqhrVbRHEzpXpVcPkl/yO/cuZPu3bsD0LRWBabXOrKLnMgAACAASURBVEux7NE4zAycswS8+IOEhEg3HnZG8Vr8/1s7uxAh0qKfd1xwCImqAdn4sU+t+w7qV6tWLQYNGkRVf09eMc9AqXv6tfgMag90ZslCpLgH3kHTWl+O///55P5LnRKFcI19F27x/vIjCZ99PU1M6V7VISSCgoJ45pln2LlzZ0LblJHd6RMz0/EdipYT4H+3JCREuvRIj1oopWorpXYppSKVUrFKKatSKtzZxQnhKjciYxj0896EN679vNxYM/xp8vvZZ5yzWCxMmDCBChUqsH79et5++237isG7Yc5zjht7abH9HQl5skmkU4/61NNkoAuwEKgO9ARkMHyR4RwMvs3ve0OYu/VcQltWTxPLh9SnYPy0pAcPHqRPnz7s3m1/K7tHh+f4upk7zG4B10/c3ZgyQu+VULhOan4FIVLcI4/1pLUOUkoZtdZWYI5SaqsT6xIi1QVdi6DL9O0Jc0j8a2KXygTkzEJMTAyffPIJn3zyCRaLhUK5vPm+dRaeK7wFLiezwfbTJCREhvDIL9wppdyBA0qpz7H/s/B2XllCpK7IGAv95u1JEhLDmpakSYAbhAZx88hmvpkwHovFwuAabnza1ICvRzKj2hjcoPNPULpFKlUvhHM9alD0wH4/YzAwAvAHOjqrKCFSS6zFxuS/g5LMa927bhEalshGjb2jsYxfismgyA/MamUkj3cWGhRO5p9OzQFQvh1kKwx+yQ8tLkR69LD3KNoC/lrrKfGfNwJ5sL9TsQ0IcnqFQjjJ/ou36TN3FzeiYh3av+5cifZV/Fn/aTcqfj6fwTXceaOu/Z2HjuXuGfKsYheo2sP+lrXpwYMBCpFePeyMYiT2m9j/8gCqAT7AHGCRk+oSwmkiYyx8uuoYP++4kGTZ/2pC44tT6TtqKbPW2R+NXXzMwog67hhyFge3LFCyGeSvBNmLQIHKqVy9EKnvYUHhrrW+mOjzP1rrm8BNpZTcoxDpTqzFRu/ZO9l9/pZDewFfI6v9fyDwt6WUW2nmcqTG3QjvNfTgrZYlMAz6B7yyuahqIVzrYUGRPfEHrfWQRB9zp3w5QjiH1pp1R6/y6erjnA2Nclj2v6ez8cKOTvT7IpQFR+xzVtfxNzKrjSdlSxaDARslJESm9rCg2KGU6qe1npG4USk1ANh5n3WESHM+W3OCaRtPO7SVzZ+Vn0r/Q87t47GhCQ7XeLvBp009GdS3N8aCFaFcO/u81UJkYg8LihHAH0qpbsDe+LZq2O9VtHNmYUKkBK01n6+9GxK+3OE54w4GeweiLgRhPm+FrAYMSvFDOy+MuUpQZGQgePq5tnAh0pAHBoXW+hpQVynVBCgf37xSa73B6ZUJkQImbwhiQeA+ehi309G4mcqG09i05vstcYz8y0yDABMru3mhlKJ4t8+h9quuLlmINOdR56PYAEg4iHRja1AoIxcfJNftQ2zz+AAPZb/3cPKGlb7LzGy+YH+xzssNov1KkKX/GvDJ48qShUizHnkIDyHSA601H6w4yu9bDvOh2xzaeGwDwGLTfLUtlvcCYzBbIG9WN6aM6knHQe9B1oIyYJ8QDyBBITKEOJtm7pazTNoQRJnovRzw/CRhmcWmqT/7DjtC7GcRvbp35qtJ35EjR/LzXAshHElQiHQv1mJjwi4zF27t5QXjRj5wd5y512RQNG3xPJfX7WX69Ok0b97cRZUKkT5JUIh0bdPJ6/T/cTdNrFtZ6jEVTxUHwNaLFiJjoVnTxtB+Gu965GJ0XBy+vr4urliI9EeCQqRL4eY4xiw+yKZDQfzg/hW13I8DEBmrGbs+hm93xpI3dw6OTvqR7H7Z8QQ8PT1dW7QQ6ZRTg0Ip1QL4BjACM7XW4+/TrwawHeistZbxo8QD2UL2c/iXD/gqMhB3z7vDgv952kL/5dGcD9MYjUZe6TcQLy8vF1YqRMbgtKBQShmBKcCzQDCwSym1TGt9NJl+nwFrnVWLyAAirsKP7dHXjmJAUxcgfkrqW9Ga1/80M3e//bJTlSpVmD17NpUry4B9QqQEZz4TWBMI0lqf0VrHAvOBtsn0GwosBq45sRaRnm2aAF+WgmtHUOgki1vPt4eEh4cHn376KTt27JCQECIFOfPSU0Eg8cizwUCtxB2UUgWB9kAToMb9NqSU6g/0B8idOzeBgYEpXWu6FBkZmWGPhcFqpvD5hRS+kPyVyEjtSaBbA3JWbksH32uEzZnDyJEjCQgIYMuWLalcbdqSkf9ePC45FinDmUGhkmm799fBicAorbVVqeS6x6+k9XRgOkDp0qV1o0aNUqrGdC0wMJAMeSwirsK0ehB1Pcmin+MaMWJ/EXLZwti3fBYeJiN1WkPVqlVp3LixC4pNezLs34snIMciZTgzKIKBQok++wOX7ulTHZgfHxK5gJZKKYvW+g8n1iXSsqgbMK1+kpAI11loeW0Ie9YsxnxuGdeBE0dfp2LFigA86BcNIcR/48yg2AWUVEoVBUKwz5TXLXEHrXXRf/+slJoLrJCQyMRio2BOC4i6e7vqrC0vo+P6sG73GW5v/AgdZyZHjhxMnDiRChUquLBYITIPpwWF1tqilBqC/WkmIzBba31EKTUwfvk0Z+1bpEMxkfbLTbfOJTTNszzL21ebcmP1ZGJC7A/Ldez0AlMmf0vevHldVKgQmY9T36PQWq8CVt3TlmxAaK17O7MWkYbdOgdTaoMlOqFpiqUNX1i6ELbtS2JCjpI1R25+mDWddu1kGhQhUpu8mS1cJ/oWrHwDDi92aF4RW42vbC8AULbtYKo0KMtnn3xE9uwy05wQriBBIVzDasH8U1c8Q7YlNEXHaToH5mftmYvke0lTo1h2fu5XCw9TRxcWKoSQoBCpzmK1sfG7YTS9cTck/rlgodNSA1dvngSl6OIfzviBbeRpJiHSAAkKkaq0zcaBSZ1pGvYnABExmlf+8mLRbvuTTmXLlmXWrFnUqVPHlWUKIRKRoBCp5npEDBvm/I/O8SGx7rSFHsusXA2PwGgyMebttxk7diweHh4urlQIkZgEhXC+yGvcWDIK96C1dFZRCc1HbrtzNfw21apVY9asWVSqVMmFRQoh7keCQjhP9C04sgS94g1yYkOjOX1TUzyHgePGUvRfsJHcS5bQuXNnTCb5qyhEWiX/OkXKOPcPbPgYom/aP2sbhJ4E7IN+XY6wMXiVmTVBFgKHFqPYG7+QJUsWunfv7rqahRCPRIJCPDlLDKx6Ew4vgdiIZLtorZm7P47X/zRz2wxeWbJwrdHX1CxYMpWLFUI8KQkK8WQssTC7BVzae98uZ2/Z6L8imr/O2Gehq9v4WRbMm42/v39qVSmESAESFOLxhV+CqfXuXmZK5FtLO5ZZ63L1+B6OrPwBW5wVH7/sfDd5Ei917y7vRQiRDklQiEcXEwlrRsO+Hx3bsxflSO0JdFh6hxibEYDYnDbQc+n0YmemfDuJPHnyuKBgIURKcOZUqCIj0Rp+65E0JMq1ZW3T1bRcFMXNw5vRWlPAz5Ptn/XixLGjLFwwX0JCiHROzijEw8VFw4wmcO2oY3vllzhQ5X36vf8zV1ZMJO76OQp7uLFoxrsUyOYFOUu4pl4hRIqSoBAPt+otx5DIVxG6/MzeGx407/Yqodt+B23DlC0fb7arZQ8JIUSGIZeexP2d3QxzWjlebgqoC33XM3TWZmrVqELo1kUA+NZox9rNOxjSva2LihVCOIucUYikbDZY1BuOLnVsr/ACtnbTeXHstyz+bDgAbrkCyPnca/z0dnealJVZ54TIiCQohJ3NCifX2h95DdmTNCRyleZY9Q959auNnIkrhFuuwmQpXQ+/Oi/waaeqNJWQECLDkqDI7OLM9lnm9v903y6hT/XjjeXX2HFhC2aDFwY3D/L3/oYCOXxYNawB2b3dU7FgIURqk6DIrLSGf76G9e/fv0vB6izwfoVX+7/G7Vs38KkcSs7mgwHIm82bZUPqS0gIkQlIUGQ2YcFw5RD8MSjZN6vx9IMyrQmJdufVn06wfNVLAHgEVCRrzQ4ADGxYnOHPlMTTzZialQshXESCIjPZPdt+mUnbki4r3hTaTkH75mPmzJmMeP0NoiIjUO5ZyN74FXwqNUcpxTddKtO2csHUr10I4TISFJnFju9h9cjkl/X4A4o1AqXYsX07/fv3B8CrRE1yNBuEyTcXAItfrUO1wjlSp14hRJohQZEZnN8Ka952bAuoCwG1ock7aGVIGKzPLX9pfGu0wyNfSbKUfRqlFKXy+rBwQF38sri5oHghhKtJUGR0kddh0SugrXfbXt0KecsDcPjwYfr160fJtoPZGZUTc5yNHE36JnSd1LUKbSoVSO2qhRBpiLyZnZFZLbDoZYi4bP/slQNGHIG85YmNjeX999+nStWqbN++nYXff4U5zvHexfc9qklICCHkjCLDCloPP3VI1KCg4wzw82fnzp306dOHw4cPA+BTpSXZG/ZO6OluNPBB2/I0L58vdWsWQqRJEhQZ0a1z9jOJxJ5+izsF6vK/N9/k66+/xmazkSVXQXyfHYJnQAUAmpTJw8QulfH1MMkEQ0KIBBIUGU2cGX7rBeawu20Vu0Cj0URcD2XW7NloIGutjvjV64bBzQOjQfHDyzWpXzKXy8oW4l5xcXEEBwdjNpufeBt+fn4cO3YsBatK+zw9PfH398fNLeUePpGgyEhC9tjnjfiXwY2wTovIUrIebgYjKosfeVu/jqfywSN/yYRu49qUl5AQaU5wcDC+vr4UKVLkic9wIyIi8PX1TeHK0i6tNTdu3CA4OJiiRYum2HblZnZGseUbx5AAlnu9SLlnuzPu4/GsOXyFlt/8g7lAFYeQ6FqzEC/VCkjtaoV4KLPZTM6cOeUy6GNQSpEzZ87/dBaWHDmjSO9i78DPneD8loSm61E2hm3Lw/wtUwH4cvZv/BRdGaXu/l5QNSAb3WsVpmM1/1QvWYhHJSHx+JxxzCQo0jGDNQamN4TQk4D9tPPXwxYGrNVERp1BuXmQrUFPfKu1dgiJN54txdCmJe+3WSGEcCBBkd7ERNjnjTi2nKeP/pHQHB6j6brYzKpTcQB4Fq5EjhZDcct29xHXGkWy07RsXvo3KJbqZQuRHl25coXhw4eza9cuPDw8KFKkCBMnTsTd3Z3WrVsnPGKekmJiYujZsyd79uwhZ86cLFiwgCJFiqT4fh6HU4NCKdUC+AYwAjO11uPvWd4dGBX/MRJ4VWt9wJk1pWvnttgvM8XdSbLInKMcgeZwlMcFcjTpg3eFZ1FKUSyXNy2eysfARsXJ6ilDcAjxqLTWtG/fnl69ejF//nwA9u/fz9WrVylUqJDT9jtr1iyyZ89OUFAQ8+fPZ9SoUSxYsMBp+3sUTgsKpZQRmAI8CwQDu5RSy7TWRxN1Ows01FrfUko9B0wHajmrpnTt0CJY3Meh6dQNKx4mxe0S7WhzsTPZW10nu8GIyTcnw5qWpHONQhTM5uWigoVIOUVGr3Tats+Nb5Vs+99//42bmxsDBw5MaKtcubJ9nXPn7q5/7hw9evQgKioKgMmTJ1O3bl0uX75M586dCQ8Px2KxMHXqVOrWrUufPn3YvXs3SileeeUVRowY4bDfpUuXMm7cOAA6derEkCFD0Fq79H6NM88oagJBWuszAEqp+UBbICEotNZbE/XfDsid1XtZLbD1G1j/QUKTxab5+lB23l0ZQvmnynPD/QVQCpNfHgDWDG9AmXxZXVWxEBnC4cOHqVat2kP75cmTh3Xr1uHp6cmpU6fo2rUru3fv5pdffqF58+aMHTsWq9XKnTt32L9/PyEhIQmXrG7fvp1keyEhIQlnLCaTCT8/P27cuEGuXK57hN2ZQVEQuJjoczAPPlvoA6xOboFSqj/QHyB37twEBgamUIlpV67r2yl08Xf8wk84tB+8aqXznzk4fuYCACdjc5LdYsHgZsTLBB/X9+LK8b1cOe6Kql0nMjIyU/y9eBQZ5Vj4+fkRERHh9P3cbx9ms5nY2Nhkl0dGRmKz2YiIiCAsLIw333yTQ4cOYTQaCQoKIiIigvLlyzNo0CAiIyNp3bo1FStWJHfu3AQFBTFgwACaN29O06ZNk2zfarUSGRmZ0G6z2YiMjMTDw+ORv5PZbE7RvwPODIrkzpN0sh2Vaow9KOont1xrPR37ZSlKly6tGzVqlEIlplG750Dgpw5NMRbNx5tj+PgfKzbbRYy+ucnZfDBexasDkC2LG6tfa0B+v8x5qSkwMJAM//fiEWWUY3Hs2LGEl+Xud3noYf7LC3fVqlVjxYoVya7v4+ODwWDA19eXL7/8En9/f3755RdsNhuenp74+vrSokUL/vnnH1auXMnAgQN566236NmzJ4cOHWLt2rXMmTOHFStWMHv2bIdtBwQEcOvWLcqUKYPFYiEiIoLChQs/1qUnT09PqlSp8kTfOznOfOEuGEh8x8cfuHRvJ6VURWAm0FZrfcOJ9aRtF3dC4HiYUApWDHdYZLFpas3TfLgpFpvNim/VVhToMyUhJLJ6mlg2uH6mDQkhnKFJkybExMQwY8aMhLZdu3axceNGh35hYWHkz58fg8HAjz/+iNVqH9L//Pnz5MmTh379+tGnTx/27t1LaGgoNpuNjh078uGHH7J3794k+23Tpg0//PADAIsWLaJJkyYuf5/EmWcUu4CSSqmiQAjQBeiWuINSKgD4HeihtT7pxFrSrl0z4c//QVxUsovjGr/H3NjGnN/wBaaoTeRsMRTPQk8BkCeLIk92X95pVY6AnFlSs2ohMjylFEuWLGH48OGMHz8eT0/PhMdjExs0aBAdO3Zk4cKFNG7cGG9vb8B+ZvfFF1/g5uaGj48P8+bNIyQkhJdffhmbzT6k/6effppkv3369KFHjx6UKFGCHDlyJDxx5UpK62SvBqXMxpVqCUzE/njsbK31x0qpgQBa62lKqZlAR+B8/CoWrXX1B22zdOnS+sSJEw/qkj5obT9z2DM32cXrL3lz+KmRTLtehug4K9oah7bZMLh50Kpifr7tUoVNmzZmiEsMKSGjXG5JCRnlWBw7doyyZcv+p21ktrGe/pXcsVNK7XnYz9f7cep7FFrrVcCqe9qmJfpzX6DvvetleJYY+LG9w7Ab/7pd8gVeX3yOOUvWY8gyjgJ9p2L0yooyuqGM0P/pYoxp+d/+8QghxOOQN7NTW9QNWPASXEj0ZLDBBAM28cfWk7w6eDBXLl8Go4ms1dticLdfUiqWy5vRz5Xh2XJ5XVS4ECKzkqBIDTYrbP4STqyCS/scl2UL4GrHpQwdOpqFCxcC4FGwLDlbDMMtl/1ZgA/aluelWoUxGGSANCFE6pOgSA0bP4eN45O2B9RB91xO2/oN2LFjB8rNk2wNe+FbtRVKGfB2N7JiWAOK5vJO/ZqFECKezEfhbEHrYeNnSdsrvADdF6FMbowd9xHZStagQJ8pZK32PEoZ6FozgMPvN5eQEEK4nJxROIslFg4vhj/ujhODbwFsrb5m2uoDnN0eyhcdfdhz/iZjtlvx6/BeQrcP2panZ50iqV+zEEIkQ84onOHgQvgkv2NI+OTjRONZNOz3MYNfH82ECROYtuRvOk7dRoTZktBtRs/qEhJCpBFXrlyhS5cuFC9enHLlytGyZUtOnjzJuXPneOqpp5yyz02bNlG1alVMJhOLFi1yyj4el5xRpKToW/BTJwjZ7dBssWkmXG/MuLr2Nz3z5s3Li8PeY/wOx+HChzQuIU81CZFGuGqY8YCAAObOncuECROcto/HJUGRUmw2WPJqkpDYH5WbPqsUe49+D0Dv3r3p+OrbDF1yyqHf2JZl6VM/5SZDFyJDGef3RKs90qt248KSbXbVMOP/TlJkMKSdCz4SFCnBZrW/G3Ey0eC3Pnmh90omvvkxe4/+QOHChZk+fTq+xavRdcZ2h9VXDK3PUwWf7B+CEMI5XDXMeFokQZESlg+zvyMRz1x1AJ5tPgfgyy+/JF++fNTq0JdPNwVzdsPdkMjqaWLN8KcpIJMLCZFuxcXFMWTIEPbv34/RaOTkSfuwdTVq1OCVV14hLi6Odu3aUblyZYoVK8aZM2cYOnQorVq1olmzZi6u/tFIUPxXe3+EfT8BEBmrGbMjG4G/r2Z3i48IDotlwe5r7M37HPN/dxyfymRQzO5dQ0JCiEdxn8tDD/NfxnoqX778I91M/vrrr8mbNy8HDhxIGGYc4Omnn2bTpk2sXLmSHj16JAwzfuDAAdauXcuUKVP47bffkgwznhZJUPwXVw7DqjcB+PO0hf4rYzl/KwKj8RLDJ/7Kqpv3n5FqYpfKVC+SI7UqFUI8piZNmjBmzBhmzJhBv379APsw43fu3KFw4cIJ/cLCwvD398dgMPDDDz84DDNesGBB+vXrR1RUFHv37qVly5a4u7vTsWNHihcvTu/evV3x1R6bBMWTCguBuS25GRHNG3+ambs/DoDS5StSvvNIVt3MlmQVHw8TX71YiadL5cbTzZjaFQshHoOrhhnftWsX7du359atWyxfvpz33nuPI0eOOP8LP4BThxl3BpcPM641bJkIf41j+Yk4+i03czVK4+7uTpY63chasz3K4BgCz5TNS6dq/tQvmQsfj5TL5owynHRKkGNxV0Y5FjLM+JNLV8OMZziHf4flwyHGfr30RrTmapSmdMmiRDQchVtOf4fubkbF+tcbyaRCQoh0TYLifmxW2DkDrtofY+PkWnTkVY5et1E+j/2MoVclN4JyNeXHnANwU3efec7j60HDUrl5p3U5/LzcXFG9EEKkGAmK+9nwEfzzVcLHc7dtDFgRzabzVg4O9KZkTiNvZfuaRTH5SDz496SuVWhTqUDq1yuEEE4iQXGvqBv2KUqPLQPApjVTdsbx9nozUXGQw0sxNrQ5u7x7o813zyIqFPTj+x7V5HFXIUSGI0HxL63hz3dg2+SEpmPXrfRabWLXWTMAxcuWw9J0JDu9HR97rVDQj4UD68iTTEKIDEmCAuzjNP0xEA4uSGj65VAcLy+NJtYKRu/s5Gg2CEupOgnLA3JkwWRUlMjtw8QulSUkhBAZlgSFJQbmtYUL2xyaY/I+RZzaj0/FxmRr/ApGTx8AahbNwZcvVKJQDnmSSYiMzmg0UqFCBbTWGI3GhAH/Ukrv3r1p3bo1nTp1om/fvrz++uuUK1cuxbafUjJnUMREwPGVsHM6hOwBIDpO88uhOOpUKkaHuA8xZ/WgQL/rmLLmpmgub0Y2L02Lp/KhlMxbLURm4eXlxf79+wFYu3Ytb7/9Nhs3bnTKvmbOnOmU7aaEtDOObWrZ9xN86g9LBiSExObzFip/H0Xf5WZa73saMx4AmLLmZk7vGvz9ZiOeq5BfQkIIF1JK3fe/6dOnJ/SbPn16QnvWrFmT9H1S4eHhZM+eHYDIyEiaNm1K1apVqVChAkuXLgUgKiqKVq1aUalSJZ566ikWLLBfzt6zZw8NGzakWrVqNG/enMuXLyfZfqNGjdi92z5NgY+PD2PHjqVSpUrUrl2bq1evAnD9+nU6duxIjRo1qFGjBlu2bHni7/M4Ms8Zhdawdgxs/y6hKSJGM/ovM9/ttg+/4Z7Tn+jsJahWMCuDG5WQMwghMrno6GgqV66M2Wzm8uXLbNiwAQBPT0+WLFlC1qxZCQ0NpXbt2rRp04Y1a9ZQoEABVq5cCdjHgYqLi2Po0KEsXbqU3Llzs2DBAsaOHfvAwQCjoqKoXbs2H3/8MSNHjmTGjBm88847vPbaa4wYMYL69etz4cIFmjdvzrFjx5x+HDJ+UMSZIfQkbPgQTv2Z0Lz6VBx9VsRxOdwCBiN+tV/Ar05nPnuxKl1qBriwYCFEch51uKH+/fvTv39/4L8P4ZH40tO2bdvo2bMnhw8fRmvNmDFj2LRpEwaDgZCQEK5evUqFChV48803GTVqFK1bt6ZBgwYcPnyYw4cP8+yzzwJgtVrJnz//A/fr7u5O69atAahWrRrr1q0D4K+//uLo0aMJ/cLDw1NlmJKMHRR3bsLs5vagSGTR0TheWBgNgHu+EuR87jXc8xRlVIsyEhJCiGTVqVOH0NBQrl+/zqpVq7h+/Tp79uzBzc2NIkWKYDabKVWqFHv27GHVqlW8/fbbNGvWjPbt21O+fHm2bdv28J3Ec3NzS7iaYTQasVgsANhsNrZt24aXV+q+r5Vx71FcOQwTSiUJiQjtxWcBk3HPV4JsjV4hX48v8StYgs86VuDVRsVdVKwQIq07fvz/7d19lFR1Hcfx92dhcRdMhEUoXWkxlUUSF4UUE8NAUIujHrfUwKc0T6UongNHrY7p0R6sTI9ZEJWBPXmUrKAnJHWFfAIiZEHNyIck7IhkpAjs07c/fr9hxmV3dhh3Hnb2+zpnzt575zd3fvfLcL9z7537/T1Ha2srVVVVbN++naFDh1JeXs4jjzzCyy+/DMCWLVvo378/M2fOZM6cOaxdu5aRI0eydevWPYmiubk562qwU6dO5a67kvd6JY52cq30jihaW8KF6g3JAUe2vNnG3IfbmPzRidxWfhk7+lZy4jXzufrUWs44+n30LRNlZX4twjn3TolrFBBOfS1atIg+ffowY8YMpk+fzrhx46irq6O2thaAxsZG5s6dS1lZGeXl5cybN49+/fqxePFirrrqKrZv305LSwuzZ89m9OjR+9yfO++8kyuuuIIxY8bQ0tLCySefzPz587t1mztSWonilVXwo1P3zJoZd/+1mVkPtrJzdzNLEFXTKpkyahgLLjjOk4NzLq3EIETtDRkypMNTSTU1NUybNm2v5XV1daxYsWKv5QsXLtwz3dDQsGf6rbfe2jNdX19PfX39nvdN/JIqn0ojUfzjYXh+GTyVzKwvvNHG5Ut38tCL4R+68gPjGTjhXOZMPZJLTzrMk4RzzmWo5yeKjb+C+y/eM9vaZnxnVRPXPdzM7uY2yioPYPCUyzliwmn87qqJDBrQr3B9dc65HqhnJ4rXN8FvZr1jTxBMKAAACY5JREFU0VP/auOaZbsB6D/qIxxx1pWceXwtnz5phCcJ53oYM/N7mfZRLkYt7bmJoultuO9CaHqTNjPKJBa0fIyHhh7LARPWcODwUfz+27MZffDAQvfUOZeFiooKtm3bRlVVlSeLDJkZ27Zto6KiolvX2zMTRfMuWPRxeG0ja7a0cumSXVROmcW/q6cAMOGTH+KO8+qofe8BBe6ocy5b1dXVbN68ma1bt2a9jl27dnX7TrPYVVRUUF1d3XXDfdDjEkVZWxN8ZRg7m40vN+zmtieaaDOoeGIlwz4xhdvPPYazx3ZvkJxz+VdeXs6IESPe1ToaGhoYO3ZsN/Wo98rpDXeSTpP0N0mbJF3XwfOSdGd8fr2kY7taZ+XOV3n0pRbGzN/BNx9vAuCA8Wdx0FnXM3faSE8SzjnXzXJ2RCGpD/Bd4FRgM7Ba0hIzeyal2enAEfFxPDAv/u3U5jeamLQoXKw57KBKmk+7kbKDRzNl1DA+9xG/s9o557pbLo8oPgRsMrMXzKwJuBc4s12bM4F7LHgSOFBS2mpZb+wyystg0sTxtFz0c8oOHs154w/l9nOP8XsjnHMuB3J5jeIQ4JWU+c3sfbTQUZtDgHcUa5d0OXB5nN0NbGhYuRpWng3ArfHRCw0BXi90J4qExyLJY5HksUgame0Lc5koOvp63/4Hvpm0wcwWAAsAJK0xs3Hvvns9n8ciyWOR5LFI8lgkSVqT7WtzeeppM3Boynw1sCWLNs455wool4liNXCEpBGS+gHnAUvatVkCXBh//XQCsN3M9h4j0DnnXMHk7NSTmbVIuhJYBvQB7jazjZI+G5+fD/weOAPYBLwNXJLBqhd03aTX8FgkeSySPBZJHoukrGOhXNQFcc45VzpKd4Q755xz3cIThXPOubSKNlHkovxHT5VBLGbEGKyX9LikYwrRz3zoKhYp7cZLapVUn8/+5VMmsZA0SdI6SRslPZrvPuZLBv9HBkpaKunpGItMrof2OJLulvSapA2dPJ/dftPMiu5BuPj9D+AwoB/wNHBUuzZnAH8g3ItxAvBUoftdwFicCAyK06f35liktHuY8GOJ+kL3u4CfiwOBZ4DhcX5ooftdwFh8Abg1Th8E/AfoV+i+5yAWJwPHAhs6eT6r/WaxHlHkpPxHD9VlLMzscTN7I84+SbgfpRRl8rkAmAX8Engtn53Ls0xi8SngATP7J4CZlWo8MomFAe9RGNhif0KiaMlvN3PPzFYQtq0zWe03izVRdFbaY1/blIJ93c5LCd8YSlGXsZB0CHA2MJ/Slsnn4khgkKQGSX+RdGHeepdfmcTiLmAU4YbeRuBqM2vLT/eKSlb7zWIdj6Lbyn+UgIy3U9IphERxUk57VDiZxOIO4Fozay3xUdEyiUVf4DhgMlAJPCHpSTN7Ptedy7NMYjENWAd8FPgAsFzSSjP7X647V2Sy2m8Wa6Lw8h9JGW2npDHAD4HTzWxbnvqWb5nEYhxwb0wSQ4AzJLWY2a/z08W8yfT/yOtmtgPYIWkFcAxQaokik1hcAnzdwon6TZJeBGqBVfnpYtHIar9ZrKeevPxHUpexkDQceAC4oAS/LabqMhZmNsLMasysBlgMfL4EkwRk9n/kN8BESX0l9SdUb342z/3Mh0xi8U/CkRWShhEqqb6Q114Wh6z2m0V5RGG5K//R42QYixuAKuB78Zt0i5VgxcwMY9ErZBILM3tW0h+B9UAb8EMz6/Bnkz1Zhp+Lm4GFkhoJp1+uNbOSKz8u6RfAJGCIpM3Al4FyeHf7TS/h4ZxzLq1iPfXknHOuSHiicM45l5YnCuecc2l5onDOOZeWJwrnnHNpeaJwBREru66TtEHS/fF3/vnuwyRJJ+b7fVPef2KsZLpOUmUB+9EgqeR+Tu26jycKVyg7zazOzD4INAGfzeRFkrrz3p9JhMq7hTID+FaMw84C9sO5tDxRuGKwEjhc0oBYT3+1pL9KOhNA0sXxqGMp8KCk/SX9WFJjrKl/Tmw3VdITktbG9vvH5S9Juikub5RUK6mGkJyuid/oJ0qaLump+N5/infwIukgScvj678v6WVJQ+JzMyWtiuv4vqQ+7TdO0uS4zsa4fftJugz4JHCDpJ+1az9A0u8Uxk7YIOncuPyGGJsNkhYo3l0Zjwhul7RC0rMKY3E8IOnvkm6JbWokPSdpUYzZ4o6O4jqLoevlCl0/3R+98wG8Ff/2JZSa+BzwVWBmXH4goSbRAOBiQo2awfG5W4E7UtY1iFDXaQUwIC67FrghTr8EzIrTnyfcoQxwIzCn3XoSN6FeBtwWp+8Cro/TpxGKqA0hVCNdCpTH574HXNhuOysI1TqPjPP3ALPj9EI6GC8DOAf4Qcr8wPh3cMqynwDT43QDybEWribU7nkfsF+MWxVQE/v94dju7sS2x9ePSxdDf/Tuhx9RuEKplLQOWEOow/MjYCpwXVzeQNjJDo/tl5tZos7+FOC7iRVZGIvjBOAo4LH4+ouA96e83wPx718IO82OVAPLYpmHucDouPwkwhgHmNkfgcTYH5MJ1VlXx/ecTBg8J9VI4EVL1uBaRBhcJp1GYIqkWyVNNLPtcfkp8YinkVAFdXTKa5akvHajmb1qZrsJ9YwSReBeMbPH4vRP2bvKcFcxdL1UUdZ6cr3CTjOrS10QT6WcY2Z/a7f8eGBH6iI6Lju/3MzO7+T9dse/rXT+uf8O8G0zWyJpEuGII7HujghYZGbXd/J8utd2ysyel3QcoSbP1yQ9CHyDcMQyzsxekXQjIZEmJLavLWU6MZ/Y3vYx29cYul7KjyhcMVkGzEo59z62k3YPAlcmZiQNIozs92FJh8dl/SUd2cX7vQm8J2V+IPCvOH1RyvI/E64nIGkq4RQVwENAvaSh8bnBktp/A38OqEn0C7gASDt2taSDgbfN7KfAtwhDWyaSwuvxukE2Y4EPlzQhTp8ftytVNjF0vYAnCldMbiZUulyvMDj8zZ20u4UwctsGSU8Dp5jZVsK1jF9IWk/Y6dV28X5LgbMTF7MJRxD3S1oJpFYWvQmYKmktYUzyV4E3zewZ4EuEC+zrgeWEawN7mNkuQoXO++Mpoza6Hn3vaGBVPP3zReAWM/sv8APCqaVfE0pr76tngYtiXwcD89r1NZsYul7Aq8c61wVJ+wGtFspZTwDmtT9tVuzir7x+a+HnyM7tE79G4VzXhgP3SSoj3PPxmQL3x7m88iMK55xzafk1Cuecc2l5onDOOZeWJwrnnHNpeaJwzjmXlicK55xzaf0f6m+ZxwBE77wAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"import scikitplot as skplt\n",
"y_pred=knn.predict_proba(x_test)\n",
"skplt.metrics.plot_cumulative_gain(y_test, y_pred)\n",
"plt.title(\"Gain chart for KNN\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {},
"outputs": [
{
"data": {
"image/png":...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here
April
January
February
March
April
May
June
July
August
September
October
November
December
2025
2025
2026
2027
SunMonTueWedThuFriSat
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30