The trough in the figure below has width w=2" role="presentation" style="display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px;">??=2w=2 ft, length L=17" role="presentation" style="display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px;">??=17L=17 ft and height h=5" role="presentation" style="display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px;">h=5h=5 ft.
If the trough is full of water, find the force of the water on a triangular end. (Use the density of water =62.4 lb/ft3" role="presentation" style="display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px;">=62.4 lb/ft3=62.4 lb/ft3.)Force =Don't forget to enter units
Find the work to pump all of the water over the top of the trough.Work =Don't forget to enter units
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here