The tasks below require you to use maximum likelihood to estimate regression coefficients. the Standard error of the regression and the standard error of the estimates. Specifically, assume that the...

1 answer below »

View more »
Answered Same DayDec 22, 2021

Answer To: The tasks below require you to use maximum likelihood to estimate regression coefficients. the...

Robert answered on Dec 22 2021
124 Votes
1)
   
)3........(0
22
ln
)2....(..........0
1ln
)1...(..........02
2
1ln
2
2ln
2
ln
1
4^
2
^^
2^2
1
^^
2^
1
^^
2^
1
2
2
2







































N
i
ii
N
i
iii
N
i
ii
N
i
ii
xy
NL
xxy
L
xy
L
xyN
L














Equations (1), (2) and (3) are the first order conditions for the maximum of log likelihood function
with respect to
^^
, and
2^
 .
2)
Solving equation (1) we get,
xy
xNNyN
xNy
N
i
i
N
i
i
^^
^^
1
^^
1
0
0





 


Solving equation (2) we get,




















N
i
i
N
i
ii
N
i
i
N
i
ii
N
i
i
N
i
ii
N
i
i
N
i
i
N
i
ii
xx
yyxx
xNx
yxNxy
xxNxyxy
xxxy
1
2
1
2
1
2
1
^
1
2
^^
1
1
2
^
1
^
1
)(
))((
0)(
0




Solving equation (3) we get,







N
i
ii
N
i
ii
xy
N
N
xy
1
2
^^2^
2^4^
1
2
^^
)(
1
22
)(




3)
Hessian matrix for second order conditions is as follows:
2
2 ln

 L


 Lln2

2
2 ln

 L


 Lln2

2
2 ln

 L

2
2 ln

 L

 

2
2 ln L

 

2
2 ln L

22
2
)(
ln

 L
On solving for the log likelihood function we get following matrix:
2^

N

2^
1



N
i
ix
...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here
April
January
February
March
April
May
June
July
August
September
October
November
December
2025
2025
2026
2027
SunMonTueWedThuFriSat
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30