Problem 1 Problem 1 Compute sample correlation coeeficient and the coefficients for the least-squares regression line Given the following data We want to predict the selling price of a house in...

1 answer below »

View more »
Answered 1 days AfterSep 20, 2022

Answer To: Problem 1 Problem 1 Compute sample correlation coeeficient and the coefficients for the...

Monica answered on Sep 21 2022
66 Votes
Problem 1
    Problem 1
        Compute sample correlation coeeficient and the coefficients for the least-squares regression line
        Given the following data        We want to predict the selling price of a hou
se in Newburg Park FL
                based on the distance the house lies from the beach.
        Distance from the beach, x (in miles)    Selling price, y (in thousands of dollars)
        6.2    302.7
        18.5    216.3
        8.5    250
        8.3    292.3
        4.1    308.5
        4.9    264.8
        11.6    227
        13.8    265.5
        13.5    196.6
        13.2    188
        10    274.4
        7.4    234.3
        6.2    270.8
        5.7    216.4
        10.9    197.3
        9.2    290.2
        What is the value of the slope
        What is the value of the y-intercept
        NOTE: Round answers to three decimal laces
Solution_1
            Distance from the beach, x (in miles)    Selling price, y (in thousands of dollars)
            6.2    302.7
            18.5    216.3
            8.5    250
            8.3    292.3
            4.1    308.5
            4.9    264.8
            11.6    227
            13.8    265.5
            13.5    196.6
            13.2    188
            10    274.4
            7.4    234.3
            6.2    270.8
            5.7    216.4
            10.9    197.3
            9.2    290.2
    Solution
        1)    Slope    -5.749
        2)    Intercept    304.313
            Slope and intercept are the coefficient of the least square regression line equation
solution_2
    SUMMARY OUTPUT
    Regression Statistics
    Multiple R    0.75
    R Square    0.56
    Adjusted R Square    0.41
    Standard Error    7.54
    Observations    5
    ANOVA
        df    SS    MS    F    Significance F
    Regression    1    213.08    213.08    3.75    0.15
    Residual    3    170.47    56.82
    Total    4    383.55
        Coefficients    Standard Error    t Stat    P-value    Lower 95%    Upper 95%    Lower 95.0%    Upper 95.0%
    Intercept    72.10    31.93    2.26    0.11    -29.52    173.71    -29.52    173.71
    x    0.48    0.25    1.94    0.15    -0.31    1.27    -0.31    1.27
    Solution
    1)      True, the variation in the sample y values that is not explained by the estimated linear regression. From the above table we can observed that sum of square error value is equal to 170.47
    2)        The proportion of the total variation in the sample y values that is explained by the estimated linear relationship. From the above table...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here
April
January
February
March
April
May
June
July
August
September
October
November
December
2025
2025
2026
2027
SunMonTueWedThuFriSat
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30