Final Project Due: 30th April, XXXXXXXXXX�59pm ET Up until now, we have given you fairly detailed instructions for how to design data analyses to answer specific questions about data -- in particular,...

1 answer below »
The question is in the pdf file


Final Project Due: 30th April, 2021 11�59pm ET Up until now, we have given you fairly detailed instructions for how to design data analyses to answer specific questions about data -- in particular, how to set up a particular analysis and what steps to take to run it. In this project, you will put that knowledge to use! Put yourself in the shoes of a data scientist being given a data set and asked to draw conclusions from it. Your job will be to understand what the data is showing you, design the analyses you need, justify those choices, draw conclusions from running the analyses, and explain why they do (or do not) make sense. We are deliberately not giving you detailed directions on how to solve these problems, but feel free to come to office hours and recitation hours to brainstorm. Objectives There are two possible paths through this project: �. You may use data set #1, which captures information about bike usage in New York City. See below for the analysis questions we want you to answer. �. You may use data set #2, which captures information about student behavior and performance in an online course. See below for the analysis questions we want you to answer. Partners On this project you may work with one partner (except for Honors contracting students who must work individually). Working with a partner is optional, and working with a partner will not impact how the project is graded. If you want to work with a partner, it is your responsibility to pair up; feel free to use Piazza's "Search for Teammates" feature (https://piazza.com/class/kjn0wpn1k2v5ju?cid=5) to facilitate this. If you are working with a partner, you must share a repository. This means that one of you will clone your repository on GitHub classroom, and the other will join this team (rather than cloning a second repository). When you go through the normal steps for cloning your repository you will have an opportunity to join an existing team (i.e., your partner has already created a group) or create a new team (i.e., your partner hasn't set up their repository yet). If you plan to team up with someone who has already cloned their repository, it is very important that you follow these instructions to join their team, rather than creating a new repository. Path 1: Bike traffic The  NYC_Bicycle_Counts_2016_Corrected.csv  gives information on bike traffic across a number of bridges in New York City. In this path, the analysis questions we would like you to answer are as follows: https://github.com/ECEDataScience/ProjectS21/blob/main/README.md#due-30th-april-2021-1159pm-et https://github.com/ECEDataScience/ProjectS21/blob/main/README.md#objectives https://github.com/ECEDataScience/ProjectS21/blob/main/README.md#partners https://github.com/ECEDataScience/ProjectS21/blob/main/README.md#path-1-bike-traffic https://piazza.com/class/kjn0wpn1k2v5ju?cid=5 �. You want to install sensors on the bridges to estimate overall traffic across all the bridges. But you only have enough budget to install sensors on three of the four bridges. Which bridges should you install the sensors on to get the best prediction of overall traffic? �. The city administration is cracking down on helmet laws, and wants to deploy police officers on days with high traffic to hand out citations. Can they use the next day's weather forecast to predict the number of bicyclists that day? �. Can you use this data to predict whether it is raining based on the number of bicyclists on the bridges? Path 2: Student performance related to video-watching behavior behavior-performance.txt  contains data for an online course on how students watched videos (e.g., how much time they spent watching, how often they paused the video, etc.) and how they performed on in-video quizzes.  readme.pdf  details the information contained in the data fields. There might be some extra data fields present than the ones mentioned here. Feel free to ignore/include them in your analysis. In this path, the analysis questions we would like you to answer are as follows: �. How well can the students be naturally grouped or clustered by their video-watching behavior ( fracSpent ,  fracComp ,  fracPaused ,  numPauses ,  avgPBR ,  numRWs , and  numFFs )? You should use all students that complete at least five of the videos in your analysis. �. Can student's video-watching behavior be used to predict a student's performance (i.e., average score  s  across all quizzes)? This type of analysis could ultimately save significant time by avoiding the need for tests. You should use all students that complete at least half of the quizzes in your analysis. �. Taking this a step further, how well can you predict a student's performance on a particular in- video quiz question (i.e., whether they will be correct or incorrect) based on their video- watching behaviors while watching the corresponding video? You should use all student-video pairs in your analysis. What to turn in You must turn in two sets of files, by pushing them to your team's Github repository: report.pdf : A project report, which should consist of: A section with the names of the team members (maximum of two), your Purdue username(s), and the path (1 or 2) you have taken. A section describing the dataset you are working with. A section describing the analyses you chose to use for each analysis question (with a paragraph or two justifying why you chose that analysis and what you expect the analysis to tell you). A section (or more) describing the results of each analysis, and what your answers to the questions are based on your results. Visual aids are helpful here, if necessary to back up your conclusions. Note that it is OK if you do not get "positive" answers from your analysis, but you must explain why that might be. All Python  .py  code files you wrote to complete the analysis steps. https://github.com/ECEDataScience/ProjectS21/blob/main/README.md#path-2-student-performance-related-to-video-watching-behavior https://github.com/ECEDataScience/ProjectS21/blob/main/README.md#what-to-turn-in Note: You may encounter instances in the data where you would need to make a decision on including extra information, changing non number values in files to appropriate numbers. How you choose to handle this is up to you. You may visit office hours to seek guidance. userIDVidIDfracSpentfracCompfracPlayedfracPausednumPausesavgPBRstdPBRnumRWsnumFFss 718eaa5dec19bcf6c7fea0870dd102dbe844fbbb01.145097876270.995567821950.995567821950.001.50.0000 210f854b0afc3d476d711b2b41379954e48cfa4400.5734967682360.8580007194170.8580007194171.9980055401761.52.22044604925e-16040 e16cf25ff5bb827bf3b5a0c8afeed15c2223a8b500.77873222530.8291597951111.137496542580.051103416435811.462198841070.0895620573422201 46dff32368088c11707106514f0450518d19b30d00.6396260387810.8576841889980.8603120745010.001.34555480970.211187071766170 8a861f5af4ed0668eb03bd8a77d2b7ced04f901e00.7865263157890.7543298605851.051674904020.001.339290074760.245159273905601 a5cd61ab53a41471ed8e02f49382adbe32abab2100.8057396121880.9955634260660.9955634260660.001.236394932020.0567112785974001 df52ec6e38a415b7ca73c2abdc98d2808094406300.9956712834720.994675964750.994675964751.4418993536531.00.0000 23f1a996532c1f6364409247f5cf5f39a74ed51c00.9369298245610.3619797209141.042554798410.001.115970562580.1195400150510221 721c5aba958a008c0c12576d213d3e31f938acd3069.59786888270.9955036871320.9955036871320.001.254.4408920985e-16000 4b6c249e8bad484758f705bba03448d62f8c55a100.9971421975990.9954777626890.9954777626890.001.00.0001 cc2f33801a511f01a24be40b28f5abe1336b14cd00.5988208679590.8980469669750.8980469669750.062037857802411.52.22044604925e-16071 d9d9c1c18c7bbb124f59740310a3b4bdd74bb19100.03829455216990.03334988800640.03334988800640.060137580794111.00.0010 d150054dd7be922aa4e9fa661680845cda3e3e6100.4329787626960.7373634259760.7373634259760.001.729212161670.0961362216651070 0db5a84a784255d55e028f69e74219a8ad8de28800.665696214220.9955105627450.9955105627450.10502585410911.52.22044604925e-16000 c4402ed287caa2aee24b18ddb67c96bcd4a120a400.7963758079410.9955216933490.9955216933490.13395383194821.253962433690.0312235094545000 2d5277807a3dd19f1995bca1dbaeb67b34acff1001.2043554940.9955112390351.1851437499128.274380424731.00.0231 a7c40dcb8b206bb1efea54491890af36773803d900.007791320406280.01168005540170.01168005540170.001.50.0011 d87eb2e538a89779625677b5af3ebeb3a5dca49701.061922437670.9108661001741.069256109332.69817359187171.004422805030.00970466860925401 6f9a183129dc79901be506efd4cb9f08d70fe12f00.7661846722070.9955829257560.9955829257560.001.302021444290.101484631381000 c337e0e79deb1aebc6e40fe098a19118c708bc2500.6641052631580.9944977060250.9944977060250.53006094182831.52.22044604925e-16001 cf9a79ee85014b5778e36e3e2a8e39750eec0b1c00.9905558633430.9869475501180.9891811604590.29020313942811.00.0011 4545dbd04bd651793b14c3f2dfdd2d7d3866940400.9969704524470.9955017709780.9955017709780.01781163434911.00.0001 3a06840c44362fc0102e4c7d1af502e6cc1ba5a600.700634349030.9983337504491.08340572076172.26936195861.606806323780.123668872985301 163c848e2ff3ee8193244ee6fc3e77460ab5a8ae00.9511975992610.828812993791.183668189151.37564542936361.252.22044604925e-16941 6766ce0617009834d1842b0e0608605eecfd4eb700.9982391505080.9955648913610.9955648913610.064767313019411.00.0001 7d40aff4e1e8c4c4da29ea1d71124de7e6decd0100.7944986149580.9955792061620.9955792061620.013086795937241.252317704160.186066654801001 98036ef75feb38ce50bc815822e3dfc4b24b12ff057.95157617730.9955030108420.99550301084210.062906740521.005305815630.0512241219832001 2cf57819991e06a6df6d83159a02cd4d808e5d8d01.034984302860.911529045071.295117668791.6161643582671.252.22044604925e-16401 a262aad399b379bcc816139c6c95152b4f11a86a00.995892890120.9955327394160.9955327394160.017476454293611.001763011890.0209199608408001 20c3866152ca35099cd5ec0219d6c768ea1559bd00.8371375807940.05653999952771.258535137910.001.505729798590.0531153983041900 b162ed08a3670de54a25a707e75abdd6d41bff0f01.03692428440.326607615971.036924280790.001.00.0661 82356e78af3a4f9076823710d12a8be6046c2c8601.026934441370.7981530301841.033348521450.099759926131121.006680858140.0403184904235511 d17d0f0b8293b4d09bb2ed2934a479fa5e8166d800.9039916897510.9951234431810.9951234431810.052785780240121.102937571440.124078174382001 37fcfc00a689b10bf9d40990ea2342c87ec018f901.312462603880.05902401099380.2938187399010.11020313942821.750.05121 1e6bdc5f12fe1ec224bddde3d038ded1a83a8f5200.7863130193910.7656328041590.786281116320.038767313019411.00.03101 ded07c0673d5989c96a401963788150607ecd0c400.7772437673130.9955078012290.9955078012290.1956426592811.286966219390.0887414980207001 be9f6774d4265f65faa1a641a2120c927c7a447601.789224376730.5318115412851.88686776236237.418102493141.068370851460.069222630060725151 e6d11c0a9b45b99facb4e1d210f714f21ff6193f00.5901043397970.7059827884241.187208347930.854531855956102.00.0121 45a8d9c79b5c0067bc3417bbcbb0691a8981b48200.6909205909510.9955045888520.9955045888520.03662049861511.44467248990.155847079145001 51fe07803f956ded8eddffa62b06a5d75225753300.8870424746080.5542736354271.110363056050.11651892890131.252862854660.0265992054165611 141f61a2b4b592b83d6dceec206b3be01389b7f400.4368005540170.8107501332290.8107501332290.001.63759076640.45928554757011 b419a107e23bad17bd8e3c306c94f5930292b29700.9967940904890.9955564659170.9955564659170.82721883656531.00.0001 e91aa432cfe7585e308fcfcfbf9dbc8706db42fb01.055202216070.8314346424221.0547203224928.923837488521.00.0261 2dfda1e00a4240e04d7b0fe0bd48abed41816b5a00.8341828254850.9954906403741.043269722640.29451338873541.250.0101 ffc056bac4bd97fb466f6a055d56ad10c92edbc301.245767313020.9217594011471.555289577651.7515761772921.250425077420.0102999351327021 6b48fe5eeba7dceb99e91eb8e8ad67ee80e2a8f500.6750590951060.7887291438980.7887291438980.001.50.0040 d7fc9fc41bacdf3e5e6fb869663cde0c4f62493001.129957525390.7994039907971.12395212130.049573407202231.00.0221 bc75a6a9d0508a4737d52228c3d32a639acde61600.9982354570640.9954852018770.9954852018770.001.00.0001 33a90c2c9bf69df9469e3b84981307824d1bf75300.5370415512470.9955056032871.061823239480.001.981327886440.0201432221783101 8faf9e10cad7c52163af318cfdd27f2cb31f593701.000932594640.9955382906280.9955382906280.044527239150521.00.0001 37a85a85117276c3f2814c36330fdc214e5cebeb00.7148919667590.9257247920861.067655380570.96820775623331.56.66133814775e-16401 9b8843f4e5dfb1ea2f5328d7dc31b98df7212b2101.526194829180.4942603847681.498387821556.4359270544891.00.0301 569262335b90658c4539cb54cbd9b8b0b64d6a8506.758139427520.9290375291260.93215387261667.111554016611.00.0010 ab2d0109ffba4249904e6d7b34615db4a3a96e0200.5694238227150.9955971982890.9955971982890.008746075715611.752.22044604925e-16001 6f18f57554e5628cdcfbd209652262e13ad5dd3b00.6351468144040.8898080739091.119409671350.001.807256230880.24311915546731 4849186a4d4658744860f4991edf0c90b77b9af400.8005530932590.9955090428540.9955090428542.9822012927121.250.0001 18830ba36c7e53f4a911520c85ae95b025dd8b8c00.8095724838410.8087759170041.1883593662117.562526315841.468940151720.18726761825400 ce9a32424e0c51fb4a0fb47f128382cbb93ea9dd00.9975216989840.9955461806760.9955461806760.001.00.0001 6ea1dd5432e7f30a3703d69946ed27802f520b4600.9990212373040.995678733480.995678733480.001.00.0000 1090c634532f16ed388d2e7e1a3d1e147f695ed200.8646186518930.8380483983431.014167684485.9873850415521.201936816380.217355950962351 22adc972108ad28de91e77ff0b1608a841af35a501.095266851340.9654995383191.04682917821671.28936472891.00.0001 df397f7b983608a9996cbf643cb397e754cb8c4a00.820580794090.319604989030.8168416483840.54352262234561.00.0140 ca3983929da6b8cda298dbefe057b1b8bf893c1200.6052779316710.4204675519951.155673064070.50471652816321.929745421930.179749275039041 b05f7eaac4995ec44e40f1d8cec0fbc0d845671800.5661394275160.7997680848921.042532023680.045699907663911.846270523820.249756497046201 59dad3d0906a6b51eb02873a4f92d82abca7c8bf00.7923139427520.9954985022430.9954985022430.042364727608511.258477978640.0737145027683001 c240e0d39d7f43391dd6bb488543b197ad1d189b01251.676525390.5579145575440.8551394018170.0013010156971411.00.0221 f6a4ccbf46c387f9674d28f074dcdf679a9dfdab00.981651892890.9714794335050.9805717696090.6172945521711.00.0011 3ecb19a5166e560f57f6821f6680c5f5d5e28d9c00.9963564173590.995528597140.995528597140.001.00.0000 e2b1b20b5b3daa15f3d1231ba63d9c0dd09c359200.768714681440.7347525818491.12881188210.11627516158821.476287900080.0779050674929500 9a016a7324f0412f7b71ec8938ec7340e1beb12e00.4370378578020.522033182780.5331439861033.1300323176441.230740505210.0590603464097051 d0f55b4c7ae3b281253c00faa7b962553101a40701.121764542940.9955931828181.078018626324.2909935364721.00.0011 4f170f77b13963e32218a671de4cf3f12e15ca0b00.7883785780240.408700251671.174707375480.53672391505141.495129501270.0650120874321411 21b9bd07f402d1a73ccc2aee791594084fcd270b00.6167063711910.7699990412180.772067369935236.35554847621.260997644830.1983360464410100 f4629f6b86291f35540e9dcf5400ace933f0671a00.9959843028620.9955541834390.9955541834390.001.00.0001 dbead5daee831db870450864b2641f92edad1b7808.548517082180.5174070518541.07283548371235.2974533721.025300997710.0786816644013000 74e6c7036f164a9009a59b0d4d16fee57eec3d6301.135542012930.8947373862931.135455205270.021804247460831.00.0731 9e3f5cea817230677da76290026e041f3ef3ff5200.9966168051710.9955549442650.9955549442650.06372945521721.00.0001 1f48febb4f96dad94a67cca6dc37935131eeabe800.9968088642660.9955962261220.9955962261220.001.00.0001 840d7bd7398578da5ce552725b90112c0e4980110156.0280784860.7188943491030.7265628836820.001.00.02101 9bce357801c05bf4912675479d20d1f0f66221ee01.032129270540.1870308780691.031435298932.2705927977831.00.0081 6f3543f0b5a657ec7b41bb567f72c19dd8df603b00.6805743305630.9955670470350.9955670470351.3420083102521.499938607610.00391718383976100 113f6e7c015b26bd42be5a24d73646eac114fbd400.9994515235460.9955058287170.9955058287170.081660203139421.00.0001 c3002b3aeffa1372379c27c6b3b07462c2ece9d600.8320350877190.8693368588671.212368864510.78543490304751.477090347950.0747867528725211 874e5a630bffcce756182fa82a927d34be0d066f00.9980812557710.9955194672280.9955194672280.058950138504211.00.0001 e1077b77076a91340e7affa569867cd2be9f231c00.9592003693440.9592320717820.9592320717821.6852068328731.00.0030 c55d7597fdf155bba0d2f17a1b887489bbbe021d07.01763988920.9511916666221.528271433263.1846795937251.094251210250.248606349581401 e0a05e4d8a966471a2a0d7234ec0cd0a53d2919a00.7968291782090.3943058969320.79705147580.022523545706431.00.0451 6ad6de9220f877d69e2acbbf4415d6a03dd406bc00.9983471837490.9955562845160.9955562845160.13724376731321.00.0001 7a849d60eaddc001b50a39f64702b93b7e14d50e01347.481265930.9697488237071.064129334850.606162511542231.00.0511 b26220ed0d65aa980cc97e66ecdfd778b32065bd00.9987820867960.9955121759780.9955121759780.080700831024931.00.0001 62485f42cd68b619d2d102310beffcfa63834b7600.9076325023080.9074361201430.9074361201430.031677746999111.00.0011 edd07b2ebaad77918675dec152ecdb4e61eedd2501.043989843030.9955309641550.9955309641550.076759002770131.00.0000 871f1d79645b25877cd66576bafb37612c5190aa00.6417663896580.8021747293940.8021747293940.001.252.22044604925e-160221 0f6e6e0117e720cf882fe08e9a8b383f7cf8bc6901.024913204060.9954787771240.9954787771241.564698984321.00.0001 4ad71c5c6e655926e43f128ea951e684b24deb8200.8517072945520.5499550921021.049263610560.036450600184731.254.4408920985e-16621 b68702b42c72445d96aecbbf56f339c302c8056000.02652262234530.00.00.0000000 ae187f9862045ad23d5d48d0e21c382975d9f6ff00.7010941828250.02891752310321.05293896090.4114284395211.50359285380.0417573728871200 7cc49fddd19def093fe3ccf637a5f1942a7f3a1a01.100240997230.9954992695290.9954992695290.25332963988921.0050513570.0351756029487001 92cc4160beac7555f4e4eec78f699a763e1c61b401.535936288090.4409730172621.535376576362.2941071098871.00.01910 cc7bdadf675c04371205dcc90262950795ee221b01.63369898430.6425093474521.617839933810.22956786703671.00.01200 5ac1effbe0ed5caf72849eaf9c3932d112d8c47800.5705475530930.9955325421640.9955325421640.001.752.22044604925e-16001 bd94798eae6f612c6585c18b74add1b7e9afabc301.014013850420.9955087593060.9955087593060.001.00.0001 b787d769a79ef4ac460bf24ec4cd7a64caad6a0100.9967876269620.9955142823390.9955142823390.06673037857811.00.0001 d51c2e4d1134ac47a501d384acc56662f7f91189098.55256232690.806086131441.04569499398139.59202308431.004920187090.0655496012284331 7ad6e868b4f252a4ab4f871ae22c0577a1be8b3300.6796814404430.9955005311130.9955005311130.001.469420047680.0842852021252001 5ba56dcaa1a0ac61e416cb774ef15701788780f900.5641181902120.3818078926631.122252794650.18985041551252.00.01210 db7463891173027353eb4d86d647d9c0cfbaf0be00.6569279778390.9956691350960.9956691350960.55098984302921.541204057050.266383106113000 7224f87b5a17433e84465190ca73ebac836781f600.9967913204060.9955559868780.9955559868780.001.00.0000 f8fd60e4d3a03328fd9028e00abac9b7b6b6f3420394.6564487530.9942111704820.9942111704821.2348448753541.00.0001 941f7587bc48c10e87916b31b73993bbc766aa9201.001653739610.9954427646910.995442764691141.21238504221.00.0001 346c8ed667ddcc2bbe646d6059d2227c528b48d901.003465373960.9948217333850.9948217333850.17146075715631.00.0000 e3f1470944d648b0d379c1981108e62bbc3adaec01.086182825480.3665015871391.14336093143.9489824561441.053702343550.10267250939121 631b870715bbec927e7c4186357c6ec7b1b565c400.6473490304710.8760120296180.9523195703850.026299168975111.488751980880.0800720246604121 da0aa0a303e4acdbb02010ba3a79694421cda54701.09785780240.3835338625881.097058927961.3834496768231.00.0701 e4077c749ed181ccb013b6e836ab2232c830a65e00.627384118190.4690854282540.7023311369690.077170821791321.121632789120.127838169594311 17eb5a9bdaccf6acf2c8ab2df18d119bc092ccf700.005159741458910.004739990745110.004739990745110.001.00.0001 4abee20ef2bec8cb82db33189efe36c1a9a06c4b00.9962548476450.9954814822830.9954814822830.50781440443211.00.0001 00b098ff9568683910095337baa28accffce9e1501.013319482920.9955323167340.9955323167340.035819021237311.00.0001 25d43fcb3755cd4b708805a9a450e1b11fc8e2ad00.4337940904890.6506132744870.6506132744870.001.52.22044604925e-160101 b2db7912d333497252da4882bc743059e08125d201.052565096950.9053350925891.022986813930.581658356417101.00.01511 42ae3eaf7b2977bd86277ec95173c9a777a3aefc01.22914681440.9054651163511.45202693002630.61750230881.195732162630.199493507404001 6a916e1165cf6c15d76c21d9a0a6a785c3735d7b00.9952105263160.9949078758010.9949078758010.054543859649121.00.0000 5efb55ae0e1fe4a4bc7562b496550b22a9c96fe001.017362880890.9380434143691.011695348960.25363434903151.00.0101 11a6af014647a7cc953d6bdac2cb9a136b0e8e4f00.6780332409970.574890734391.008954636730.099789473684221.490210878240.010772687667021 ebfbaf7084b9e2c9dc3f577411d79742ba77ba1d01.795517082180.3250108544521.91220746523.1749759926151.00.0201 cf0d6c128865b27285835ceb67869f46aa57561601.020997229920.9955518164240.9955615662690.033707294552221.00.0001 aafbb1c298e3d1eb71ecccd18829d47279504db3080.2705216990.9956087374840.9956087374840.001.995889718490.0452475841157000 ff188d4a1b20659ade90809587f2e47153a6c7a806795.010728530.9947038863610.9947038863610.039145891043431.00.0000 90819aed781447a3cf94c534dda586f7c861942201.008124653740.9958190636180.9958190636180.27163527239221.00.0001
Answered 2 days AfterApr 30, 2021

Answer To: Final Project Due: 30th April, XXXXXXXXXX�59pm ET Up until now, we have given you fairly detailed...

Sandeep Kumar answered on May 02 2021
155 Votes
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here