The Logarithm Function. The Exponential Function & Arbitrary Powers: Other Bases Part-1(a)- Part-2(d) calculus 1. (1 pt) Find the exact value of each expression. (a) logs 2 (b) lneVI (a) (b) Correct...

1 answer below »

View more »
Answered Same DayDec 23, 2021

Answer To: The Logarithm Function. The Exponential Function & Arbitrary Powers: Other Bases Part-1(a)-...

David answered on Dec 23 2021
138 Votes
1)
Exact value of a) log82= log88
1/3=1/3=0.3333..
b) lne√2=√2lne=√2=1.414
2)a. log1.25+log8=log10=1
b.
log510+ log520- 3log52= log5200/8= log525=2
3) lnx+2lny-7lnz=ln(x*y2/z7)
4) 2log2
3+ log
2
5=2 log2
15=15
e3ln2=eln8=8
5) a True
b. True
c. True
d.False because its power to whole expression
6) f(x)=5x-1+4-2x=3x+3
7)f(x)=-4*5x=-20x
8) f(x)=(8-2x)exp(x)
a) f’(x)= (8-2x)exp(x)-2exp(x)=0 which gives x=3
b) f(x) increasing i.e f’(x) >0 i.e (-INF , 3]
c) f(x) is decreasing i.e f’(x)<0 *3.INF)
d) f”(x)= (8-2x)exp(x)-2exp(x)-2exp(x) now at x=3 f”(3)=-2exp(3)<0
local maxima at x=3
e) none
f) f”(x)= (8-2x)exp(x)--4exp(x) <0 for all x<2 => f(x) is concave up for all values of (-INF, 2)
g) f”(x)= (8-2x)exp(x)--4exp(x) >0 for all x>2 => f(x) is concave down for all values of (2, INF)
h) at x=2 ,f”(x)=0
i)
9)f(x)=ln(x^4+432)
a. f’(x)=4x^3/(x^4+432)> for all x>0 => increasing function on (0 inf)
b. f’(x) < 0 for decreasing function for all x<0, (-inf 0)
c. f’(x)=0 at x=0, f”(x)=0 at x=0, => no local maxima
d. no local minima same reasoning as above
e....
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here
April
January
February
March
April
May
June
July
August
September
October
November
December
2025
2025
2026
2027
SunMonTueWedThuFriSat
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30