Data SiteTotal Patients ScreenedMRI Eligible Patients (High risk)High Risk Patients who were called at least once by the NavigatorPatients who were scheduled for MRIPatients who received their...

1 answer below »
The assignment requirments are in the last slide of the Week 8 lecture pdf.


Data SiteTotal Patients ScreenedMRI Eligible Patients (High risk)High Risk Patients who were called at least once by the NavigatorPatients who were scheduled for MRIPatients who received their MRI Week 1268737097 Week 2274453285 Week 32994200 Week 42956964129 Week 528868681914 Week 62389810 Week 729733291410 Week 8225635153 Week 92577500 Week 10291282586 Week 11253262432 Week 1227061561311 Week 13270332686 Week 1430043301311 Week 15292433087 Week 162245237119 Week 17286413876 Week 182904300 Week 19276171664 Week 202963730149 Week 212813200 Week 22262473396 Week 23295604297 Week 2422640281210 Week 2523868632316 Week 26293121021 Week 2722647391913 Week 2828171531914 Week 292784635129 Week 302911000 Week 312170000 Week 32254121054 Week 3329854442114 Week 342943432108 Week 3520835321510 Week 36207171321 Week 3726354471513 Week 3828769521814 Opt-in Rates (2) HunterdonOSF St. Francis Consent to Contact RateConsent to Contact RateEligible Patients ERROR:#REF!ERROR:#REF!ERROR:#REF!ERROR:#REF! ERROR:#REF!ERROR:#REF!ERROR:#REF!ERROR:#REF! ERROR:#REF!ERROR:#REF!ERROR:#REF!ERROR:#REF! ERROR:#REF!ERROR:#REF!ERROR:#REF!ERROR:#REF! ERROR:#REF!ERROR:#REF!ERROR:#REF!ERROR:#REF! ERROR:#REF!ERROR:#REF!ERROR:#REF!ERROR:#REF! ERROR:#REF!ERROR:#REF!ERROR:#REF!ERROR:#REF! ERROR:#REF!ERROR:#REF!ERROR:#REF!ERROR:#REF! ERROR:#REF!ERROR:#REF!ERROR:#REF!ERROR:#REF! ERROR:#REF!ERROR:#REF!ERROR:#REF!ERROR:#REF! ERROR:#REF!ERROR:#REF!Week 1ERROR:#REF! ERROR:#REF!ERROR:#REF!Week 2ERROR:#REF! ERROR:#REF!ERROR:#REF!Week 3ERROR:#REF! ERROR:#REF!ERROR:#REF!Week 4ERROR:#REF! ERROR:#REF!ERROR:#REF!Week 5ERROR:#REF! ERROR:#REF!ERROR:#REF!Week 6ERROR:#REF! ERROR:#REF!ERROR:#REF!Week 7ERROR:#REF! ERROR:#REF!ERROR:#REF!Week 8ERROR:#REF! ERROR:#REF!ERROR:#REF!Week 9ERROR:#REF! ERROR:#REF!ERROR:#REF!Week 10ERROR:#REF! Week 11ERROR:#REF! Week 12ERROR:#REF! Week 13ERROR:#REF! Week 14ERROR:#REF! Week 15ERROR:#REF! PowerPoint Presentation MGT599 – Capstone Week 8 8/3/2021 Agenda Week 7 Review Data Visualization Overview Design Principles Charts Storytelling • City Hospital MRI Case Week 7 Review I am running an AR(4) model looking at past yearly historical stock price on predicting future stock prices. What is the time lag in this model? What type of variable is the dependent variable in logistic regression? Why can’t we use a linear regression instead? The format of a linear regression is: y = a + b1x1 + b2x2 + b3x3 +…. What is the format of a logistic regression? Logistic Regression Data Visualization Overview Data Visualization Overview Data visualization is the visual representation and presentation of data to enhance understanding. This allows for: • better ability to grasp difficult concepts • identify new patterns • more efficiently take away key messages. Data visualization is an essential aspect of effectively communicating data and findings. Data Visualization Overview Key benefits include: • Comprehend information quickly • Identify relationships and patterns • Pinpoint outliers and potential data quality issues • We already looked at residual plots, but it’s great practice to just look at the data to see if there is anything weird • Communicate the story to others Design Principles Google’s Six Principles for Chart Design https://medium.com/google-design/redefining-data-visualization-at-google- 9bdcf2e447c6 https://medium.com/google-design/redefining-data-visualization-at-google-9bdcf2e447c6 Balance Useful when thinking of dashboards Symmetrical • Each side of the dashboard mimics the other. This type of balance feels elegant, formal, and conservative. Asymmetrical • Both sides are unique but carry a similar visual weight. “Heavier” elements jump out, while the “lighter” ones recede. This type of balance feels casual, free, and energetic. Radial • A central object anchors the dashboard, with additional objects placed around it. This type of balance draws your eyes inwards to the center focal point. Symmetric Dashboard Asymmetric Dashboard Radial Dashboard Emphasis Draw users attention to important information • Color, size, negative space, contrast • I.e. People read left to right, top to bottom, so top left is the first place Charts Simple Comparisons Bars and Columns are great options Make sure the axes make sense and are not misleading https://paldhous.github.io/ucb/2016/dataviz/week2.html https://paldhous.github.io/ucb/2016/dataviz/week2.html Comparisons over time Multiple Comparisons Composition: Parts of a Whole Composition: Parts of a Whole Composition Change Over Time Composition Change Over Time Network Graphs Heat Maps Heat Maps Be aware of scale and size 3D can be hard to read Storytelling Storytelling Storytelling Principles City Imaging City Imaging City Imaging is the premier imaging center in Citysville, USA. The center focuses on breast imaging and provides mammography, MRI, and Ultrasound services. John Doe is the director of City Imaging. Currently, they do 15,000 mammograms a year but only about 100 or so MRIs. The MRI machine is vastly underused and he is looking to boost the utilization rate of the MRIs. He wants to target 500 MRIs/year. To fix this, he bought a new piece of software called “MRI-Now”. This software consists of: • Short survey for the patient to take • Risk calculations to determine if a patient meets MRI Criteria • A patient CRM for nurse navigators to contact patients to schedule them for an MRI City Imaging - Workflow Here is the current workflow: • Patient checks in for their mammogram • They take the MRI-Now Screening Survey • They are flagged as High Risk if they meet criteria for MRI screening • They are given some information that tells them they are eligible for an MRI, what that means, and why getting an MRI is important • A couple of days later, a nurse navigator calls the high risk patients and schedules them for an MRI (usually done a month later) • The patient comes back in a month and gets the MRI City Imaging - Objections There have been a few objections that have come up from the staff and patients. They include: • The navigators occasionally get backed up with their patient caseload and are not able to call all patients – sometimes patients are not at home and they need to play phone tag and leave messages back and forth – which can be time consuming • Patients sometimes don’t understand why they are at high risk and why an MRI is necessary – as a result, they might not show up or even indicate that they want one • Other concerns include insurance coverage (which an MRI is covered if they are at high risk based on guidelines) and transportation issues Business Review It is now 9 months since the program is started and City Imaging is coming up for renewal. You have a business review scheduled with Mr. Doe to go over performance and convince him to renew. Attached is the data to date for the program. Please prepare a 5-10 slide presentation for Mr. Doe for this business review. Assignment Main Assignment: Step 1: Review and analyze the data Step 2: Prepare a 5-10 slide presentation for Mr. Doe for this business review. Bonus (1 point bonus): Record a video of you giving this presentation to Mr. Doe (me). Record yourself over zoom and send me the link! Submission: The slides in PDF format and the zoom video link (optional). Microsoft Word - DataVizChecklist_v04.docx Data  Visualization  Checklist                                             This  checklist  is  meant  to  be  used  as  a  guide  for  the  development  of  high  impact  data  visualizations.  Rate  each  aspect  of  the  data  visualization  by  circling  the   most  appropriate  number,  where  2  points  means  the  guideline  was  fully  met,  1  means  it  was  partially  met,  and  0  means  it  was  not  met  at  all.  n/a  should  not   be  used  frequently,  but  reserved  for  when  the  guideline  truly  does  not  apply.  For  example,  a  pie  chart  has  no  axes  lines  or  tick  marks  to  rate.    Refer  to  the   Data  Visualization  Anatomy  Chart  on  the  last  page  for  guidance  on  vocabulary.           Guideline     Rating   Text     Graphs  don't  contain   much  text,  so  existing   text  must  encapsulate   your  message  and     pack  a  punch.   6-­‐12  word  descriptive  title  is  left-­‐justified  in  upper  left  corner   2        1        0        n/a   Short  titles  enable  readers  to  comprehend  takeaway  messages  even  while  quickly  skimming  the  graph.  Rather   than  a  generic  phrase,  use  a  descriptive  sentence  that  encapsulates  the  graph’s  finding  or  “so  what?”  Western   cultures  start  reading  in  the  upper  left,  so  locate  the  title  there.       Subtitle  and/or  annotations  provide  additional  information   2        1        0        n/a   Subtitles  and  annotations  (call-­‐out  text  within  the  graph)  can  add  explanatory  and  interpretive  power  to  a   graph.  Use  them  to  answer  questions  a  viewer  might  have  or  to  highlight  one  or  two  data  points.         Text  size  is  hierarchical  and  readable   2        1        0        n/a   Titles  are  in  a  larger  size  than  subtitles  or  annotations,  which  are  larger  than  labels,  which  are  larger  than  axis   labels,  which  are  larger  than  source  information.  The  smallest  text  -­‐  axis  labels  -­‐  are  at  least  9  point  font  size  on   paper,  at  least  20  on  screen.       Text  is  horizontal     2        1        0        n/a   Titles,  subtitles,  annotations,  and  data  labels  are  horizontal  (not  vertical  or  diagonal).  Line  labels  and  axis  labels   can  deviate  from  this  rule  and  still  receive  full  points.       Data  are  labeled  directly   2        1        0        n/a   Position  data  labels  near  the  data  rather  than  in  a  separate  legend  (e.g.,  on  top  of  or  next  to  bars  or  pie  slices,   and  next  to  lines  in  line  charts).  Eliminate/embed  legends  when  possible  because  eye  movement  back  and   forth  between  the  legend  and  the  data  can  interrupt  the  brain’s  attempts  to  interpret  the  graph.       Labels  are  used  sparingly   2        1        0        n/a   Focus  attention  by  removing  the  redundancy.  For  example,  in  line  charts,  label  every  other  year  on  an  axis.         by  Stephanie  Evergreen  &  Ann  K.  Emery   May  2014   Arrangement     Improper  arrangement   of  graph  elements  can   confuse  readers  at  best   and  mislead  viewer  at   worst.  Thoughtful   arrangement  makes  a   data  visualization   easier  for  a  viewer  to   interpret.   Proportions  are  accurate   2        1        0        n/a   A  viewer  should  be  able  to  take  a  ruler  to  measure  the  length  or  area  of  the  graph  and  find  that  it  matches  the   relationship  in  the  underlying  data.       Data  are  intentionally  ordered   2        1        0        n/a   Data  should  be  displayed  in  an  order  that  makes  logical  sense  to  the  viewer.  Data  may  be  ordered  by   frequency  counts  (e.g.,  from  greatest  to  least  for  nominal  categories),  by  groupings  or  bins  (e.g.,  histograms),   by  time  period  (e.g.,  line  charts),  alphabetically,  etc.         Axis  intervals  are  equidistant   2        1        0        n/a   The  spaces  between  axis  intervals  should  be  the  same  unit,  even  if  every  axis  interval  isn’t  labeled.         Graph  is  two-­‐dimensional   2        1        0        n/a   Avoid  three-­‐dimensional  displays,  bevels,  and
Answered 11 days AfterAug 04, 2021

Answer To: Data SiteTotal Patients ScreenedMRI Eligible Patients (High risk)High Risk Patients who were...

Kamalika answered on Aug 16 2021
157 Votes
MRI utilization rate in treating high risk patients
MRI utilization rate in treating high risk patients
PRESENTATION
overview
MRI utilization rate is observed to be generally low than what is required in treat
ing high risk patients
A dataset has been collated through a survey of patients with high risk of getting terminal diseases
The dataset is analyzed by generating graphs, correlations, and conducting some tests to see whether there is any inherent difference between patients who are eligible for MRI and actually getting MRI done; and, patients who are called at least once by the navigator and actually getting MRI done.
Total number of patients screened vs. mri eligible patients (high risk)
From the graph it can be observed that out of the total patients screened, only few high risk patients are eligible for MRI.
Total Number of Patients Screened vs. MRI Eligible Patients (High Risk)
Total Patients Screened    Week 1    Week 2    Week 3    Week 4    Week 5    Week 6    Week 7    Week 8    Week 9    Week 10    Week 11    Week 12    Week 13    Week 14    Week 15    Week 16    Week 17    Week 18    Week 19    Week 20    Week 21    Week 22    Week 23    Week 24    Week 25    Week 26    Week 27    Week 28    Week 29    Week 30    Week 31    Week 32    Week 33    Week 34    Week 35    Week 36    Week 37    Week 38    268    274    299    295    288    238    297    225    257    291    253    270    270    300    292    224    286    290    276    296    281    262    295    226    238    293    226    281    278    291    217    254    298    294    208    207    263    287    MRI Eligible Patients (High risk)    Week 1    Week 2    Week 3    Week 4    Week 5    Week 6    Week 7    Week 8    Week 9    Week 10    Week 11    Week 12    Week 13    Week 14    Week 15    Week 16    Week 17    Week 18    Week 19    Week 20    Week 21    Week 22    Week 23    Week 24    Week 25    Week 26    Week 27    Week 28    Week 29    Week 30    Week 31    Week 32    Week 33    Week 34    Week 35    Week 36    Week 37    Week 38    73    45    4    69    68    9    33    63    7    28    26    61    33    43    43    52    41    4    17    37    3    47    60    40    68    12    47    71    46    1    0    12    54    34    35    17    54    69    Site
No. of Patients
mri eligible patients (High risk) vs. high risk patients called at least once by the navigator
In this graph, we can see a very close association between MRI eligible patients at high risk and those patients who are called at least once by the navigator.
MRI Eligible Patients (High Risk) vs....
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here