The article “Estimating Resource Requirements at Conceptual Design Stage Using Neural Networks” (A. Elazouni, I. Nosair, et al., Journal of Computing in Civil Engineering, 1997:217–223) suggests that...


The article “Estimating Resource Requirements at Conceptual Design Stage Using Neural Networks” (A. Elazouni, I. Nosair, et al., Journal of Computing in Civil Engineering, 1997:217–223) suggests that certain resource requirements in the construction of concrete silos can be predicted from a model. These include the quantity of concrete in m3 (y), the number of crew-days of labor (z), or the number of concrete mixer hours (w) needed for a particular job. Table SE23A defines 23 potential independent variables that can be used to predict y, z, or w. Values of the dependent and independent variables, collected on 28 construction jobs, are presented in Table SE23B (page 655) and Table SE23C (page 656). Unless otherwise stated, lengths are in meters, areas in m2, and volumes in m3.


a. Using best subsets regression, find the model that is best for predicting y according to the adjusted R2 criterion.


b. Using best subsets regression, find the model that is best for predicting y according to the minimum Mallows Cp criterion.


c. Find a model for predicting y using stepwise regression. Explain the criterion you are using to determine which variables to add to or drop from the model.


d. Using best subsets regression, find the model that is best for predicting z according to the adjusted R2 Criterion.


e. Using best subsets regression, find the model that is best for predicting z according to the minimum Mallows Cp criterion.


f. Find a model for predicting z using stepwise regression. Explain the criterion you are using to determine which variables to add to or drop from the model.


g. Using best subsets regression, find the model that is best for predicting w according to the adjusted R2 criterion.


h. Using best subsets regression, find the model that is best for predicting w according to the minimum Mallows Cp criterion.


i. Find a model for predicting w using stepwise regression. Explain the criterion you are using to determine which variables to add to or drop from the model.
















































































x1



Number of bins



x13



Breadth-to-thickness ratio



x2



Maximum required concrete per hour



x14



Perimeter of complex



x3



Height



x15



Mixer capacity



x4



Sliding rate of the slipform (m/day)



x16



Density of stored material



x5



Number of construction stages



x17



Waste percent in reinforcing steel



x6



Perimeter of slipform



x18



Waste percent in concrete



x7



Volume of silo complex



x19



Number of workers in concrete crew



x8



Surface area of silo walls



x20



Wall thickness (cm)



x9



Volume of one bin



x21



Number of reinforcing steel crews



x10



Wall-to-floor areas



x22



Number of workers in forms crew



x11



Number of lifting jacks



x23



Length-to-breadth ratio



x12



Length-to-thickness ratio








TABLE SE23B Data for Exercise 23






















































































































































































































































































































































































































































































y



z



w



x1



x2



x3



x4



x5



x6



x7



x8



x9



x10



x11



1,850



9,520



476



33



4.5



19.8



4.0



4



223



11,072



14,751



335



26.1



72



932



4,272



268



24



3.5



22.3



4.0



2



206



2,615



8,875



109



27.9



64



556



3,296



206



18



2.7



20.3



5.0



2



130



2,500



5,321



139



28.4



48



217



1,088



68



9



3.2



11.0



4.5



1



152



1,270



1,675



141



11.6



40



199



2,587



199



2



1.0



23.8



5.0



1



79



1,370



7,260



685



17.1



21



56



1,560



120



2



0.5



16.6



5.0



1



43



275



1,980



137



22.0



15



64



1,534



118



2



0.5



18.4



5.0



1



43



330



825



165



23.6



12



397



2,660



133



14



3.0



16.0



4.0



1



240



5,200



18,525



371



12.8



74



1,926



11,020



551



42



3.5



16.0



4.0



4



280



15,500



3,821



369



12.8



88



724



3,090



103



15



7.8



15.0



3.5



1



374



4,500



5,600



300



12.2



114



711



2,860



143



25



5.0



16.0



3.5



1



315



2,100



6,851



87



24.8



60



1,818



9,900



396



28



4.8



22.0



4.0



3



230



13,500



13,860



482



17.6



44



619



2,626



202



12



3.0



18.0



5.0



1



163



1,400



2,935



115



26.4



36



375



2,060



103



12



5.8



15.0



3.5



1



316



4,200



4,743



350



11.8



93



214



1,600



80



12



3.5



15.0



4.5



1



193



1,300



2,988



105



20.6



40



300



1,820



140



6



2.1



14.0



5.0



1



118



800



1,657



133



17.0



24



771



3,328



256



30



3.0



14.0



5.0



3



165



2,800



2,318



92



19.9



43



189



1,456



91



12



4.0



17.0



4.5



1



214



2,400



3,644



200



13.6



53



494



4,160



320



27



3.3



20.0



4.5



3



178



6,750



3,568



250



14.0



44



389



1,520



95



6



4.1



19.0



4.0



1



158



2,506



3,011



401



11.8



38



441



1,760



110



6



4.0



22.0



5.0



1



154



2,568



3,396



428



14.1



35



768



3,040



152



12



5.0



24.0



4.0



1



275



5,376



6,619



448



14.5



65



797



3,180



159



9



5.0



25.0



4.0



1



216



4,514



5,400



501



14.8



52



261



1,131



87



3



3.0



17.5



4.0



1



116



1,568



2,030



522



10.5



24



524



1,904



119



6



4.4



18.8



4.0



1



190



3,291



3,572



548



9.8



42



1,262



5,070



169



15



7.0



24.6



3.5



1



385



8,970



9,490



598



12.9



92



839



7,080



354



9



5.2



25.5



4.0



1



249



5,845



6,364



649



13.9



60



1,003



3,500



175



9



5.7



27.7



4.0



1



246



6,095



6,248



677



15.1



60




TABLE SE23C Data for Exercise 23




























































































































































































































































































































































































































x12



x13



x14



x15



x16



x17



x18



x19



x20



x21



x22



x23



19.6



17.6



745



0.50



800



6.00



5.50



10



24



7



20



1.12



16.0



16.0



398



0.25



600



7.00



5.00



10



20



6



20



1.00



15.3



13.5



262



0.25



850



7.00



4.50



8



20



5



18



1.13



17.0



13.8



152



0.25



800



5.00



4.00



8



25



6



16



1.23



28.1



27.5



79



0.15



800



7.50



3.50



5



20



4



14



1.02



20.3



20.0



43



0.15



600



5.00



4.00



5



15



1



12



1.02



24.0



18.3



43



0.15



600



5.05



4.25



5



15



2



12



1.31



27.5



23.0



240



0.25



600



6.00



4.00



8



20



7



22



1.20



27.5



23.0



1121



0.25



800



8.00



4.00



10



20



9



24



1.20



21.2



18.4



374



0.75



800



5.00



3.50



10



25



12



24



1.15



10.6



10.0



315



0.50



800



6.00



4.00



10



25



11



20



1.06



20.0



20.0



630



0.50



800



7.00



5.00



10



25



9



18



1.00



13.7



13.9



163



0.25



600



6.00



4.50



8



18



11



18



1.20



20.4



20.4



316



0.50



800



6.50



3.50



10



25



6



14



1.00



13.6



10.2



193



0.50



800



5.00



3.50



10



25



4



14



1.33



13.6



12.8



118



0.25



800



5.00



3.75



8



25



6



14



1.06



13.6



9.6



424



0.25



800



5.00



3.75



8



25



6



14



1.42



18.5



16.0



214



0.50



600



6.00



4.00



8



20



4



14



1.15



19.5



16.0



472



0.25



600



6.50



4.50



10



20



3



14



1.20



21.0



12.8



158



0.50



800



5.50



3.50



6



25



8



14



1.30



20.8



16.0



154



0.50



800



7.00



4.00



8



36



8



14



1.35



23.4



17.3



275



0.50



600



7.50



5.50



8



22



11



16



1.40



16.8



15.4



216



0.50



800



8.00



5.50



8



28



12



16



1.10



26.8



17.8



116



0.25



850



6.50



3.00



6



25



5



14



1.50



23.6



16.1



190



0.50



850



6.50



4.50



5



28



9



16



1.45



23.6



16.6



385



0.75



800



8.00



6.50



15



25



16



20



1.43



25.6



16.0



249



0.50



600



8.00



5.50



12



25



13



16



1.60



22.3



14.3



246



0.50



800



8.50



6.00



8



28



16



16



1.55




The article referred to in Exercise 23 presents values for the dependent and independent variables for 10 additional construction jobs. These values are presented in Tables SE24A and SE24B (page 657).


a. Using the equation constructed in part (a) of Exercise 23, predict the concrete quantity (y) for each of these 10 jobs.


b. Denoting the predicted values by 10 and the observed values by y1, . . . , y10, compute the quantities  These are the prediction errors.


c. Now compute the fitted values from the data in Exercise 23. Using the observed values y1, .. . , y28 from those data, compute the residuals


d. On the whole, which are larger, the residuals or the prediction errors? Why will this be true in general?


TABLE SE24A Data for Exercise 24






















































































































































































y



z



w



x1



x2



x3



x4



x5



x6



x7



x8



x9



x10



x11



1,713



3,400



170



6



4.2



27.0



4.0



1



179



4,200



4,980



700.0



15.1



42



344



1,616



101



3



3.4



20.0



5.0



1



133



2,255



2,672



751.5



16.7



30



474



2,240



140



3



3.4



28.0



5.0



1



116



2,396



3,259



798.8



17.0



24



1,336



5,700



190



15



7.0



26.0



3.5



1



344



12,284



9,864



818.9



16.0



86



1,916



9,125



365



18



5.6



26.5



3.5



2



307



15,435



8,140



852.5



12.4



68



1,280



11,980



599



9



2.1



28.3



4.0



1



283



8,064



8,156



896.0



14.0



68



1,683



6,390



213



12



7.9



29.0



3.5



1



361



11,364



10,486



947.0



13.4



87



901



2,656



166



6



5.4



29.5



4.5



1



193



5,592



5,696



932.0



14.8



39



460



2,943



150



3



3.0



30.0



5.0



1



118



2,943



3,540



981.0



17.2



26



826



3,340



167



6



4.9



29.8



4.5



1



211



6,000



6,293



1,000.0



15.1



50




TABLE SE24B Data for Exercise 24
































































































































































x12



x13



x14



x15



x16



x17



x18



x19



x20



x21



x22



x23



22.5



14.8



179



0.50



850



8.0



5.0



6



28



11



16



1.52



32.0



18.8



133



0.25



800



7.5



3.0



10



25



7



14



1.70



24.6



15.0



116



0.25



800



9.0



4.0



10



28



9



14



1.65



20.2



21.1



344



0.75



850



8.5



6.5



12



28



19



18



1.72



30.0



13.2



540



0.50



600



6.5



7.0



15



25



12



18



1.75



25.3



14.3



283



0.25



800



7.5



6.5



14



30



20



16



1.80



22.7



14.0



361



0.75



800



9.0



7.0



10



30



25



18



1.42



20.5



16.0



193



0.50



850



9.5



5.5



10



30



15



16



1.20



26.0



20.1



118



0.25



600



10.0



4.0



10



25



8



14



1.30



32.0



20.0



211



0.50



600



9.5



5.0



10



25



13



16



1.90



May 26, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here