Tensile Test Data for Some Typical Metal Alloys Percent Y.S. [MPa (ksi)| E T.S. [MPa (ksi)] elongation at failure Alloy* [GPa (psi)] 1. 1040 carbon steel 2. 8630 low-alloy steel 3. a. 304 stainless...


Tensile Test Data for Some Typical Metal Alloys<br>Percent<br>Y.S.<br>[MPa (ksi)|<br>E<br>T.S.<br>[MPa (ksi)]<br>elongation<br>at failure<br>Alloy*<br>[GPa (psi)]<br>1. 1040 carbon steel<br>2. 8630 low-alloy steel<br>3. a. 304 stainless steel<br>b. 410 stainless steel<br>4. L2 tool steel<br>5. Ferrous superalloy (410)<br>6. a. Ductile iron, quench<br>b. Ductile iron, 60–40–18<br>200 (29 × 10)<br>600 (87)<br>680 (99)<br>205 (30)<br>700 (102)<br>1,380 (200)<br>700 (102)<br>580 (84)<br>329 (48)<br>145 (21)<br>416 (60)<br>220 (32)<br>83 (12)<br>827 (120)<br>825 (120)<br>320 (46.4)<br>750 (109)<br>800 (116)<br>515 (75)<br>800 (116)<br>1,550 (225)<br>800 (116)<br>750 (108)<br>461 (67)<br>150 (22)<br>457 (66)<br>290 (42)<br>150 (22)<br>862 (125)<br>895 (130)<br>652 (94.5)<br>17<br>22<br>193 (28 × 10)<br>200 (29 х 10)<br>40<br>22<br>12<br>22<br>200 (29 × 10)<br>165 (24 x 10)<br>169 (24.5 × 10)<br>70 (10.2 × 10°)<br>70.3 (10.2 × 10)<br>45 (6.5 x 10)<br>45 (6.5 × 10°)<br>107–110 (15.5–16 × 10')<br>110 (16 x 10)<br>110 (16.1 × 10)<br>9.4<br>15<br>7. a. 3003-H14 aluminum<br>b. 2048, plate aluminum<br>8. a. AZ31B magnesium<br>b. AM100A casting magnesium<br>9. a. Ti-5AI-2.5Sn<br>b. Ti-6Al-4V<br>10. Aluminum bronze, 9%<br>(copper alloy)<br>11. Monel 400 (nickel alloy)<br>12. AC41A zinc<br>13. 50:50 solder (lead alloy)<br>14. Nb-1 Zr (refractory metal)<br>15. Dental gold alloy (precious<br>metal)<br>8-16<br>8<br>15<br>2<br>15<br>10<br>34<br>179 (26 × 10')<br>283 (41)<br>579 (84)<br>328 (47.6)<br>42 (6.0)<br>241 (35)<br>39.5<br>33 (4.8)<br>138 (20)<br>60<br>68.9 (10 × 10')<br>20<br>310-380<br>20-35<br>(45–55)<br>

Extracted text: Tensile Test Data for Some Typical Metal Alloys Percent Y.S. [MPa (ksi)| E T.S. [MPa (ksi)] elongation at failure Alloy* [GPa (psi)] 1. 1040 carbon steel 2. 8630 low-alloy steel 3. a. 304 stainless steel b. 410 stainless steel 4. L2 tool steel 5. Ferrous superalloy (410) 6. a. Ductile iron, quench b. Ductile iron, 60–40–18 200 (29 × 10) 600 (87) 680 (99) 205 (30) 700 (102) 1,380 (200) 700 (102) 580 (84) 329 (48) 145 (21) 416 (60) 220 (32) 83 (12) 827 (120) 825 (120) 320 (46.4) 750 (109) 800 (116) 515 (75) 800 (116) 1,550 (225) 800 (116) 750 (108) 461 (67) 150 (22) 457 (66) 290 (42) 150 (22) 862 (125) 895 (130) 652 (94.5) 17 22 193 (28 × 10) 200 (29 х 10) 40 22 12 22 200 (29 × 10) 165 (24 x 10) 169 (24.5 × 10) 70 (10.2 × 10°) 70.3 (10.2 × 10) 45 (6.5 x 10) 45 (6.5 × 10°) 107–110 (15.5–16 × 10') 110 (16 x 10) 110 (16.1 × 10) 9.4 15 7. a. 3003-H14 aluminum b. 2048, plate aluminum 8. a. AZ31B magnesium b. AM100A casting magnesium 9. a. Ti-5AI-2.5Sn b. Ti-6Al-4V 10. Aluminum bronze, 9% (copper alloy) 11. Monel 400 (nickel alloy) 12. AC41A zinc 13. 50:50 solder (lead alloy) 14. Nb-1 Zr (refractory metal) 15. Dental gold alloy (precious metal) 8-16 8 15 2 15 10 34 179 (26 × 10') 283 (41) 579 (84) 328 (47.6) 42 (6.0) 241 (35) 39.5 33 (4.8) 138 (20) 60 68.9 (10 × 10') 20 310-380 20-35 (45–55)
A 10-mm-diameter bar of 1040 carbon steel (see Table 6.1) is subjected<br>to a tensile load of 50,000 N, taking it beyond its yield point. Calculate<br>the elastic recovery that would occur upon removal of the tensile load.<br>

Extracted text: A 10-mm-diameter bar of 1040 carbon steel (see Table 6.1) is subjected to a tensile load of 50,000 N, taking it beyond its yield point. Calculate the elastic recovery that would occur upon removal of the tensile load.
Jun 11, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here