Suppose you were using a logistic model to examine the association between a predictor and outcome of interest, and to rule out confounding you needed to include one or two more predictors than would be allowed by the rule of 10 events per variable. In comparing models with and without the two extra predictors, what might signal that you were asking the bigger model to do too much? How would the correlation between the extra variables and the predictor of interest influence your thinking?
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here