SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square 0.868519059 0.754325356 0.729757892 Standard Error 0.71684689 Observations 12 ANOVA Significance df MS F F Regression 1...


An organization develops a linear regression model to forecast sales. Below are the results of the regression analysis using 12 periods in the model.


The regression equation is Y = .332167832(X) + 12.42424242



  1. Is the model significant? What data demonstrates the significance of the model?

  2. What does the R Square signify?

  3. What is the forecast for period 13?


SUMMARY<br>OUTPUT<br>Regression Statistics<br>Multiple R<br>R Square<br>Adjusted R<br>Square<br>0.868519059<br>0.754325356<br>0.729757892<br>Standard<br>Error<br>0.71684689<br>Observations<br>12<br>ANOVA<br>Significance<br>df<br>MS<br>F<br>F<br>Regression<br>1 15.77797 15.77797203 30.70424132 0.000247139<br>Residual<br>10 5.138695 0.513869464<br>Total<br>11 20.91667<br>Standard<br>Error<br>Coefficients<br>t Stat<br>P-value<br>Lower 95%<br>Upper 95%<br>Lower 95.0% Upper 95.0%<br>Intercept<br>12.42424242 0.441189 28.16083155<br>7.408E-11<br>11.4412126 13.40727225<br>11.4412126 13.40727225<br>X Variable 1<br>0.332167832 0.059946 5.541140796 0.000247139 0.198600381 0.465735283 0.198600381 0.465735283<br>

Extracted text: SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square 0.868519059 0.754325356 0.729757892 Standard Error 0.71684689 Observations 12 ANOVA Significance df MS F F Regression 1 15.77797 15.77797203 30.70424132 0.000247139 Residual 10 5.138695 0.513869464 Total 11 20.91667 Standard Error Coefficients t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 12.42424242 0.441189 28.16083155 7.408E-11 11.4412126 13.40727225 11.4412126 13.40727225 X Variable 1 0.332167832 0.059946 5.541140796 0.000247139 0.198600381 0.465735283 0.198600381 0.465735283

Jun 10, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions ยป

Submit New Assignment

Copy and Paste Your Assignment Here