Standard Normal (z) Distribution: Cumulative Area from the LEFT .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 -3.50 and lower .0001 -3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002 -3.3...


Standard Normal (z) Distribution: Cumulative Area from the LEFT<br>.00<br>.01<br>.02<br>.03<br>.04<br>.05<br>.06<br>.07<br>.08<br>.09<br>-3.50<br>and<br>lower<br>.0001<br>-3.4<br>.0003<br>.0003<br>.0003<br>.0003<br>.0003<br>.0003<br>.0003<br>.0003<br>.0003<br>.0002<br>-3.3<br>.0005<br>.0005<br>.0005<br>.0004<br>.0004<br>.0004<br>.0004<br>.0004<br>.0004<br>.0003<br>-3.2<br>.0007<br>0007<br>.0006<br>.0006<br>0006<br>.0006<br>.0006<br>.0005<br>.0005<br>.0005<br>-3.1<br>.0010<br>.0009<br>.0009<br>.0009<br>.0008<br>.0008<br>.0008<br>.0008<br>.0007<br>.0007<br>-3.0<br>.0013<br>.0013<br>.0013<br>.o012<br>0012<br>.001<br>.01<br>.0011<br>.0010<br>.0010<br>-2.9<br>,0019<br>.0018<br>.O018<br>.0017<br>.0016<br>.0016<br>.O015<br>.0015<br>.0014<br>.0014<br>-2.8<br>.0026<br>0025<br>.0024<br>.0023<br>.0023<br>.0022<br>.0021<br>.0021<br>.0020<br>.0019<br>-2.7<br>.0035<br>.0034<br>.0033<br>.0032<br>.0031<br>.0030<br>.0029<br>.0028<br>.0027<br>.0026<br>-2.6<br>.0047<br>0045<br>.0044<br>.0043<br>0041<br>.0040<br>.0039<br>.0038<br>.0037<br>.0036<br>-2.5<br>.0062<br>0060<br>0059<br>.0057<br>.0055<br>.0054<br>.0052<br>.0051<br>* 0049<br>.0048<br>-2.4<br>.0082<br>.0080<br>.0078<br>.0075<br>.0073<br>.0071<br>.0069<br>.0068<br>.0066<br>.0064<br>-2.3<br>.0107<br>.0104<br>.0102<br>.0099<br>.0096<br>.0094<br>.0091<br>.0089<br>.0087<br>.0084<br>-2.2<br>.0139<br>.0136<br>.0132<br>.0129<br>.0125<br>.0122<br>.0119<br>.0116<br>.013<br>.0110<br>-2.1<br>.0179<br>.0174<br>.0170<br>.0166<br>0162<br>.0158<br>.0154<br>.0150<br>0146<br>.0143<br>-2.0<br>.0228<br>.0222<br>.0217<br>.0212<br>.0207<br>.0202<br>.0256<br>.0197<br>.0192<br>.0188<br>.0183<br>-1.9<br>.0287<br>.0281<br>.0274<br>.0268<br>.0262<br>.0250<br>.0244<br>.0239<br>.0233<br>-1.8<br>.0359<br>.0351<br>.0344<br>.0336<br>.0329<br>.0322<br>.0314<br>.0307<br>.0301<br>.0294<br>0436<br>0537<br>-1.7<br>.0446<br>.0427<br>.0418<br>0409<br>.0401<br>.0392<br>.0384<br>.0375<br>.0367<br>-1.6<br>.0548<br>.0526<br>.0516<br>0505<br>* 0495<br>.0485<br>.0475<br>.0465<br>.0455<br>-1.5<br>.0668<br>.0655<br>.0643<br>.0630<br>.0618<br>.0606<br>.0594<br>.0582<br>.0571<br>.0559<br>-1.4<br>.0808<br>0793<br>.0778<br>.0764<br>.0749<br>.0735<br>.0721<br>.0708<br>.0694<br>.0681<br>-1.3<br>.0968<br>.0951<br>.0934<br>.0918<br>.0901<br>.0885<br>.0869<br>.0853<br>.0838<br>.0823<br>-1.2<br>1151<br>1131<br>112<br>1093<br>1075<br>1056<br>1038<br>1020<br>1003<br>.0985<br>-1.1<br>1357<br>1335<br>1314<br>1292<br>1271<br>.1251<br>1230<br>1210<br>1190<br>1170<br>-1.0<br>.1587<br>1562<br>1539<br>1515<br>1492<br>1469<br>1446<br>.1423<br>1401<br>.1379<br>-0.9<br>1841<br>1814<br>1788<br>1762<br>1736<br>1711<br>1685<br>1660<br>1635<br>1611<br>-0.8<br>.2119<br>2090<br>.2061<br>.2033<br>.2005<br>1977<br>1949<br>.1922<br>1894<br>1867<br>-0.7<br>2420<br>2389<br>2358<br>2327<br>.2296<br>.2266<br>2236<br>2206<br>2177<br>.2148<br>-0.6<br>2743<br>2709<br>2676<br>2643<br>2611<br>2578<br>2546<br>.2514<br>.2483<br>.2451<br>-0.5<br>.3085<br>.3050<br>3015<br>.2981<br>.2946<br>.2912<br>2877<br>.2843<br>2810<br>.2776<br>-0.4<br>3446<br>3409<br>3372<br>3336<br>3300<br>3264<br>3228<br>3192<br>3156<br>3121<br>-0.3<br>3821<br>3783<br>3745<br>3707<br>3669<br>3632<br>3594<br>3557<br>3520<br>3483<br>-0.2<br>4207<br>4168<br>4129<br>4090<br>4052<br>4013<br>3974<br>.3936<br>.3897<br>3859<br>-0.1<br>.4602<br>.4562<br>4522<br>.4483<br>4443<br>4404<br>4364<br>.4325<br>4286<br>.4247<br>-0.0<br>.5000<br>4960<br>4920<br>.4880<br>4840<br>.4801<br>4761<br>.4721<br>4681<br>.4641<br>

Extracted text: Standard Normal (z) Distribution: Cumulative Area from the LEFT .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 -3.50 and lower .0001 -3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002 -3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003 -3.2 .0007 0007 .0006 .0006 0006 .0006 .0006 .0005 .0005 .0005 -3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007 -3.0 .0013 .0013 .0013 .o012 0012 .001 .01 .0011 .0010 .0010 -2.9 ,0019 .0018 .O018 .0017 .0016 .0016 .O015 .0015 .0014 .0014 -2.8 .0026 0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019 -2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026 -2.6 .0047 0045 .0044 .0043 0041 .0040 .0039 .0038 .0037 .0036 -2.5 .0062 0060 0059 .0057 .0055 .0054 .0052 .0051 * 0049 .0048 -2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064 -2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084 -2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .013 .0110 -2.1 .0179 .0174 .0170 .0166 0162 .0158 .0154 .0150 0146 .0143 -2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0256 .0197 .0192 .0188 .0183 -1.9 .0287 .0281 .0274 .0268 .0262 .0250 .0244 .0239 .0233 -1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294 0436 0537 -1.7 .0446 .0427 .0418 0409 .0401 .0392 .0384 .0375 .0367 -1.6 .0548 .0526 .0516 0505 * 0495 .0485 .0475 .0465 .0455 -1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559 -1.4 .0808 0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681 -1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823 -1.2 1151 1131 112 1093 1075 1056 1038 1020 1003 .0985 -1.1 1357 1335 1314 1292 1271 .1251 1230 1210 1190 1170 -1.0 .1587 1562 1539 1515 1492 1469 1446 .1423 1401 .1379 -0.9 1841 1814 1788 1762 1736 1711 1685 1660 1635 1611 -0.8 .2119 2090 .2061 .2033 .2005 1977 1949 .1922 1894 1867 -0.7 2420 2389 2358 2327 .2296 .2266 2236 2206 2177 .2148 -0.6 2743 2709 2676 2643 2611 2578 2546 .2514 .2483 .2451 -0.5 .3085 .3050 3015 .2981 .2946 .2912 2877 .2843 2810 .2776 -0.4 3446 3409 3372 3336 3300 3264 3228 3192 3156 3121 -0.3 3821 3783 3745 3707 3669 3632 3594 3557 3520 3483 -0.2 4207 4168 4129 4090 4052 4013 3974 .3936 .3897 3859 -0.1 .4602 .4562 4522 .4483 4443 4404 4364 .4325 4286 .4247 -0.0 .5000 4960 4920 .4880 4840 .4801 4761 .4721 4681 .4641
Assume that adults have IQ scores that are normally distributed with a mean of mu = 100 and a standard deviation sigma = 20. Find the probability that a randomly selected adult has an IQ between 84 and 116 and type an integer or decimal rounded to four decimal<br>places. Make sure to use the positive or negative z score charts attached, in the eBook on MSL, or in a hardcopy of the textbook.<br>

Extracted text: Assume that adults have IQ scores that are normally distributed with a mean of mu = 100 and a standard deviation sigma = 20. Find the probability that a randomly selected adult has an IQ between 84 and 116 and type an integer or decimal rounded to four decimal places. Make sure to use the positive or negative z score charts attached, in the eBook on MSL, or in a hardcopy of the textbook.
Jun 07, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here