Social media assignment
Assignment2022.pdf API Key - aPBc1ItVUF9INorSmM0HG7ciU API secret Key I5Dnpxre9omatNIWqiHWk1Slf4tTk7biWZWzp4Yo6y50pTSOhD Bearer Token AAAAAAAAAAAAAAAAAAAAADR2dQEAAAAAFxVD58AS%2Fgl9RbFUjTBSbfBARt0%3DEuzaFf7M7Pr8z0tsVJpb8lI3EieowzsLpwayAXLq89wCu2dYFO App Name Joel_SMI APP ID 24475188 #Sample codes# install.packages("rtweet") library("rtweet") ## Use your own key and secret! ## Don't share your key and secret with others! key = "" secret = "" create_token( app = "my_twitter_app", consumer_key = key, consumer_secret = secret) tweets = search_tweets("elon musk", n = 100, lang = "en") API Key - aPBc1ItVUF9INorSmM0HG7ciU API secret Key I5Dnpxre9omatNIWqiHWk1Slf4tTk7biWZWzp4Yo6y50pTSOhD Bearer Token AAAAAAAAAAAAAAAAAAAAADR2dQEAAAAAFxVD58AS%2Fgl9RbFUjTBSbfBARt0%3DEuzaFf7M7Pr8z0tsVJpb8lI3EieowzsLpwayAXLq89wCu2dYFO App Name Joel_SMI APP ID 24475188 #Sample codes# install.packages("rtweet") install.packages("Matrix") install.packages("sna") install.packages("igraph") library("rtweet") library("Matrix") library("sna") library("igraph") key = "aPBc1ItVUF9INorSmM0HG7ciU" secret = "I5Dnpxre9omatNIWqiHWk1Slf4tTk7biWZWzp4Yo6y50pTSOhD" create_token( app = "Joel_SMI", consumer_key = key, consumer_secret = secret) ##see if these four tweets can use better search terms related to elon musk and twitter as the ones given are pretty basic ones tweets1 = search_tweets("elonmusk", n = 50, lang = "en", include_rts = FALSE) tweets2 = search_tweets("elonmusk AND twitter", n = 100, lang = "en") tweets3 = search_tweets("elonmusk BUY twitter", n = 100, lang = "en") tweets4 = search_tweets("elonmusk OR twitter", n = 50, lang = "en") ## join them into one dataframe all_tweets = rbind(tweets1,tweets2,tweets3,tweets4) ## create from-to data frame representing retweet/mention/reply connections #tweets_net <- network_data(tweets,="" "retweet,mention,reply")="" tweets_net="network_data(all_tweets,"mention")" ##="" view="" edge="" data="" frame="" tweets_net="" ##="" view="" user_id-="">screen_name index all_names = as.data.frame(attr(tweets_net, "idsn")) ## (1) convert directly to graph object representing semantic network tweets_graph <- network_graph(all_tweets,"mention") ## (2) plot graph via igraph.plotting plot(tweets_graph) ## use plot.igraph parameters to make your graph readable plot(tweets_graph,edge.arrow.mode='-',vertex.size = 10,vertex.label.cex = 0.7,layout=layout.fruchterman.reingold) ## convert to undirected tweets_graph_un = as.undirected(tweets_graph,mode = c("collapse")) plot(tweets_graph_un,vertex.size = 10,vertex.label.cex = 0.7,layout=layout.fruchterman.reingold) ## also try simplify to remove loops or multiple edges ## simplify(tweets_graph,remove.multiple = true,remove.loops = true,) ## create a separate graph for each component of a graph. components = decompose(tweets_graph) sapply(components, diameter) network_graph(all_tweets,"mention")="" ##="" (2)="" plot="" graph="" via="" igraph.plotting="" plot(tweets_graph)="" ##="" use="" plot.igraph="" parameters="" to="" make="" your="" graph="" readable="" plot(tweets_graph,edge.arrow.mode='-' ,vertex.size="10,vertex.label.cex" =="" 0.7,layout="layout.fruchterman.reingold)" ##="" convert="" to="" undirected="" tweets_graph_un="as.undirected(tweets_graph,mode" =="" c("collapse"))="" plot(tweets_graph_un,vertex.size="10,vertex.label.cex" =="" 0.7,layout="layout.fruchterman.reingold)" ##="" also="" try="" simplify="" to="" remove="" loops="" or="" multiple="" edges="" ##="" simplify(tweets_graph,remove.multiple="TRUE,remove.loops" =="" true,)="" ##="" create="" a="" separate="" graph="" for="" each="" component="" of="" a="" graph.="" components="decompose(tweets_graph)" sapply(components,="">- network_graph(all_tweets,"mention") ## (2) plot graph via igraph.plotting plot(tweets_graph) ## use plot.igraph parameters to make your graph readable plot(tweets_graph,edge.arrow.mode='-',vertex.size = 10,vertex.label.cex = 0.7,layout=layout.fruchterman.reingold) ## convert to undirected tweets_graph_un = as.undirected(tweets_graph,mode = c("collapse")) plot(tweets_graph_un,vertex.size = 10,vertex.label.cex = 0.7,layout=layout.fruchterman.reingold) ## also try simplify to remove loops or multiple edges ## simplify(tweets_graph,remove.multiple = true,remove.loops = true,) ## create a separate graph for each component of a graph. components = decompose(tweets_graph) sapply(components, diameter)>->