Show that under the assumptions of Theorem 11.5 one has for arbitrary δ > 0,                                E  |mn(x) − m(x)| 2 µ(dx)                               ≤...


Show that under the assumptions of Theorem 11.5 one has for arbitrary δ > 0,


                               E




|mn(x) − m(x)| 2 µ(dx)


                              ≤ cδ,L (1 + log(n))VF+ n n + (1 + δ) inf f∈Fn  |f(x) − m(x)| 2 µ(dx)


for some constant cδ,L depending only on δ and L. How does cδ,L depend on δ? Hint: Use the error decomposition


                                   |mn(x) − m(x)| 2 µ(dx)


                                   =  E{|mn(X) − Y | 2 |Dn} − E{|m(X) − Y | 2 }


                                  −(1 + δ) ·  1 n n i=1 |mn(Xi) − Yi| 2 − 1 n n i=1 |m(Xi) − Yi| 2


                            +(1 + δ) ·  1 n n i=1 |mn(Xi) − Yi| 2 − 1 n n i=1 |m(Xi) − Yi| 2 = T1,n + T2,n.

May 03, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here