Show that under the assumptions of Theorem 11.5 one has for arbitrary δ > 0,
E
≤ cδ,L (1 + log(n))VF+ n n + (1 + δ) inf f∈Fn |f(x) − m(x)| 2 µ(dx)
for some constant cδ,L depending only on δ and L. How does cδ,L depend on δ? Hint: Use the error decomposition
|mn(x) − m(x)| 2 µ(dx)
= E{|mn(X) − Y | 2 |Dn} − E{|m(X) − Y | 2 }
−(1 + δ) · 1 n n i=1 |mn(Xi) − Yi| 2 − 1 n n i=1 |m(Xi) − Yi| 2
+(1 + δ) · 1 n n i=1 |mn(Xi) − Yi| 2 − 1 n n i=1 |m(Xi) − Yi| 2 = T1,n + T2,n.
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here