Show that if X , Y are two independent chi-square random variables with m, n degrees of freedom, respectively, the random variables X + Y and X/Y are independent.  (One-parameter exponential family)...


Show that if X , Y are two independent chi-square random variables


with m, n degrees of freedom, respectively, the random variables X +


Y and X/Y are independent.


 (One-parameter exponential family) Let 0 be a real parameter. The


distribution of the random variable X having probability density function


/*(jc|0) = C(d)eQi*)T{x)h(x)


is said to belong to the exponential family of distributions. Show that


the gamma distribution, the normal distribution with known variance,


the normal distribution with known mean, and the binomial and Poisson distributions belong to the exponential family.



May 26, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here