See Barron (1991).
(a) Show that for any random variable V with values in some interval of length B one has
Var{V } ≤ B2 4 .
(b) Show that the inequality (7.7) can be improved as follows: Assume |Y | ≤ L a.s. and let f be a function f : Rd → [−L, L]. Set
Z = |f(X) − Y | 2 − |m(X) − Y | 2 .
Then
σ2 = Var{Z} ≤ 8L2 E{Z}.
Hint: Use
Z = −2(Y − m(X)) · (f(X) − m(X)) + (f(X) − m(X))2
and
E ((Y − m(X)) · (f(X) − m(X)))2
= E (f(X) − m(X))2 E (Y − m(X))2 |X
≤ L2 E |f(X) − m(X)| 2 ,
where the last inequality follows from (a).
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here