HON-1 10/21/19 XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX1027200 10/22/19 XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX1023800 10/23/19 XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX...

1 answer below »
See attached PDF and Excel dataset


HON-1 10/21/191252.260011254.6290281240.5999761246.1500241246.1500241027200 10/22/191247.8499761250.5999761241.3800051242.8000491242.8000491023800 10/23/191242.3599851259.8900151242.3599851259.1300051259.130005911500 10/24/191260.90002412641253.7149661260.989991260.989991028100 10/25/191251.0300291269.5999761250.010011265.1300051265.1300051213100 10/28/191275.4499511299.3100591272.540039129012902613200 10/29/191276.229981281.5899661257.2120361262.6199951262.6199951886400 10/30/191252.9699711269.35998512521261.2900391261.2900391408900 10/31/191261.2800291267.6700441250.8430181260.1099851260.1099851455700 11/1/1912651274.6199951260.51273.739991273.739991670100 11/4/191276.4499511294.1300051276.354981291.3699951291.3699951501000 11/5/191292.8900151298.9300541291.2290041292.0300291292.0300291282700 11/6/191289.4599611293.729981282.51291.8000491291.8000491152700 11/7/191294.2800291323.739991294.2449951308.8599851308.8599852030000 11/8/191305.28002913181304.364991311.3699951311.3699951251400 11/11/191303.1800541306.4250491297.4100341299.1899411299.1899411011900 11/12/19130013101295.770021298.8000491298.8000491085900 11/13/191294.0699461304.3000491293.5100112981298826700 11/14/191297.513171295.6500241311.4599611311.4599611193500 11/15/191318.9399411334.8800051314.2800291334.8699951334.8699951782600 11/18/191332.2199711335.5290531317.51320.6999511320.6999511487400 11/19/191327.6999511327.6999511312.8000491315.4599611315.4599611269200 11/20/191311.7399913151291.1500241303.0500491303.0500491308600 11/21/191301.479981312.58996612931301.3499761301.349976995500 11/22/191305.6199951308.729981291.4100341295.3399661295.3399661385700 11/25/191299.1800541311.3100591298.1300051306.6899411306.6899411036200 11/26/191309.8599851314.8000491305.0899661313.5500491313.5500491069700 11/27/1913151318.3599851309.6300051312.989991312.98999995600 11/29/191307.1199951310.2049561303.9699711304.9599611304.959961587000 12/2/1913011305.82995612811289.9200441289.9200441510900 12/3/191279.5699461298.4610612791295.2800291295.2800291143800 12/4/191307.010011325.8000491304.8699951320.5400391320.5400391537500 12/5/1913281329.3580321316.4399411328.1300051328.1300051212700 12/6/191333.43994113441333.4399411340.6199951340.6199951314800 12/9/191338.0400391359.4499511337.8399661343.5600591343.5600591354300 12/10/191341.51349.9749761336.0400391344.6600341344.6600341094100 12/11/191350.8399661351.1999511342.6700441345.020021345.02002850400 12/12/191345.9399411355.7750241340.51350.270021350.270021281000 12/13/191347.9499511353.0930181343.8699951347.8299561347.8299561549600 12/16/191356.51364.6800541352.6700441361.1700441361.1700441397300 12/17/191362.89001513651351.3229981355.1199951355.1199951854000 12/18/191356.5999761360.46997113511352.6199951352.6199951522600 12/19/191351.8199461358.0999761348.9849851356.0400391356.0400391469900 12/20/191363.3499761363.64001513491349.5899661349.5899663315000 12/23/191355.8699951359.8000491346.510011348.8399661348.839966883100 12/24/191348.51350.260011342.7800291343.5600591343.560059347500 12/26/191346.1700441361.3270261344.4699711360.4000241360.400024667500 12/27/191362.989991364.5300291349.3100591351.8900151351.8900151038400 12/30/19135013531334.020021336.1400151336.1400151050900 12/31/191330.10998513381329.0849611337.020021337.02002961800 1/2/201341.5500491368.1400151341.5500491367.3699951367.3699951406600 1/3/201347.8599851372.51345.5439451360.6600341360.6600341186400 1/6/2013501396.513501394.2099611394.2099611732300 1/7/201397.9399411402.989991390.3800051393.3399661393.3399661502700 1/8/201392.0799561411.5799561390.8399661404.3199461404.3199461528000 1/9/201420.5699461427.3299561410.270021419.8299561419.8299561500900 1/10/201427.5600591434.9289551418.3499761429.729981429.729981820700 1/13/201436.1300051440.520021426.020021439.229981439.229981652300 1/14/201439.010011441.8000491428.3699951430.8800051430.8800051558900 1/15/201430.2099611441.395021430.2099611439.1999511439.1999511282700 1/16/201447.4399411451.989991440.9200441451.6999511451.6999511173700 1/17/201462.9100341481.2950441458.2199711480.3900151480.3900152233600 Microsoft Word - Document10 Deliverables: R Studio script Word.docx as described with the plots and narrative outlined below Applications of Quadratic Programming The Hodrick-Prescott Filter (Decomposition) is a mathematical method used in real business cycle theory in economics to decompose a time series into its cyclical and trend components. Its formulation is based on the following quadratic programming problem: Let be the logarithm of a time series (hence, itself a time series). 1. Perform research about the Hodrick-Prescott decomposition and provide insights about its historical development in Word docx. 2. Interpret each term of the Hodrick-Prescott objective function, and discuss a few advantages and disadvantages of this decomposition method in Word.docx. 3. Consider the quarterly time series of Alphabet (GOOG) stock prices (courtesy of https://finance.yahoo.com given in the Excel workbook: Project-part 2- Data.xlsx. Apply the Hodrick-Prescott optimization method to decompose the logarithm of the given time series into its cyclic and trend components. Use R Studio to solve the problem. 4. Interpret the results obtained from step 3, above, and discuss the merits of your decomposition, in a Word docx.
Answered Same DayMay 15, 2021

Answer To: HON-1 10/21/19 XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX1027200 10/22/19 XXXXXXXXXX...

Pooja answered on May 16 2021
148 Votes
1)
Hodrick-Prescott filter removes the cyclical component in a time series data. It gives a smoothed-curve. Hodrick-Presco
tt filter was introduced in the year 1923 by E. T. Whittaker. However, its major use was in the year 1990’s.
2)
Yt = Tt + Ct + Et
Where, Yt is log of a time series variable
Tt = trend component
Ct = cyclic component
Et = error component
Hodrick-Prescott filter objective is to minimize
Such that = penalty for cyclic component.
= penalty for variations in the growth rate of the trend component.
Lambda = 100*(number of periods in a year)2
lambda = 100*(3652) = 13322500 for a daily time series
The advantage of Hodrick-Prescott filter are
· removes the cyclic component
The disadvantages of Hodrick-Prescott filter are
· Data still contains I(2) trend
· Noise follows normal distribution
· Predictions are misleading [as algorithm changes while minimizing in iterations]
3)
> library("readxl")
> apple <- read_excel("C:/Users/HP/Desktop/week-6-project-part-2-data.xlsx")
> apple$lnprice <- log(apple$`Adj Close`)
>
> library(mFilter)
> library(quantmod)
> hp <- hpfilter(apple$lnprice,freq = 13322500)
> hp
Title:
Hodrick-Prescott Filter
Call:
hpfilter(x = apple$lnprice,...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here