r(r -- 1){r .3 3! where r is an arbitrary integral or fractional exponent. The necessary condition |x|


Number 8b


r(r -- 1){r<br>.3<br>3!<br>where r is an arbitrary integral or fractional exponent.<br>The necessary condition |x| < 1 for convergence was<br>not stated by Newton.<br>8. Use the binomial theorem to obtain the following<br>series expansions.<br>– x³ + · . .<br>(1+x)-1 = 1 – x +x?<br>(a)<br>+ (-1)

Extracted text: r(r -- 1){r .3 3! where r is an arbitrary integral or fractional exponent. The necessary condition |x| < 1="" for="" convergence="" was="" not="" stated="" by="" newton.="" 8.="" use="" the="" binomial="" theorem="" to="" obtain="" the="" following="" series="" expansions.="" –="" x³="" +="" ·="" .="" .="" (1+x)-1="1" –="" x="" +x?="" (a)="" +="" (-1)"x"="" +="" ·...="" (1–="" x)-2="1+" 2x="" +="" 3x²="" +="" .="" (b)="" %3d="" +="" (n="" +="" 1)x"="" +.="">

Jun 05, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here