RESPONDENTS SEX *RS HIGHEST DEGREE * RACE OF RESPONDENT Crosstabulation RACE OF RESPONDENT RS HIGHEST DEGREE JUNIOR COLLEGE LT HIGH SCHOOL HIGH SCHOOL BACHELOR GRADUATE Total WHITE RESPONDENTS SEX...


Looking at the tables for crosstabulation for Respondents Race, Highest Degree, and Respondents sex. How do we find out which one of these is the independent, dependent and or dummy variable? Also, how would you come up with an example for a Hypothesis for this?



This is all one doccument. Table was too large. The first image is the top of the crosstab.


RESPONDENTS SEX *RS HIGHEST DEGREE * RACE OF RESPONDENT Crosstabulation<br>RACE OF RESPONDENT<br>RS HIGHEST DEGREE<br>JUNIOR<br>COLLEGE<br>LT HIGH<br>SCHOOL<br>HIGH SCHOOL<br>BACHELOR<br>GRADUATE<br>Total<br>WHITE<br>RESPONDENTS SEX<br>MALE<br>Count<br>92<br>327<br>43<br>146<br>81<br>689<br>% within RESPONDENTS SEX<br>13.4%<br>47.5%<br>6.2%<br>21.2%<br>11.8%<br>100.0%<br>FEMALE<br>Count<br>103<br>431<br>59<br>173<br>95<br>861<br>% within RESPONDENTS SEX<br>12.0%<br>50.1%<br>6.9%<br>20.1%<br>11.0%<br>100.0%<br>Total<br>Count<br>195<br>758<br>102<br>319<br>176<br>1550<br>% within RESPONDENTS SEX<br>12.6%<br>48.9%<br>6.6%<br>20.6%<br>11.4%<br>100.0%<br>BLACK<br>RESPONDENTS SEX<br>MALE<br>Count<br>32<br>60<br>13<br>118<br>% within RESPONDENTS SEX<br>27.1%<br>50.8%<br>4.2%<br>11.0%<br>6.8%<br>100.0%<br>FEMALE<br>Count<br>31<br>102<br>28<br>20<br>12<br>193<br>

Extracted text: RESPONDENTS SEX *RS HIGHEST DEGREE * RACE OF RESPONDENT Crosstabulation RACE OF RESPONDENT RS HIGHEST DEGREE JUNIOR COLLEGE LT HIGH SCHOOL HIGH SCHOOL BACHELOR GRADUATE Total WHITE RESPONDENTS SEX MALE Count 92 327 43 146 81 689 % within RESPONDENTS SEX 13.4% 47.5% 6.2% 21.2% 11.8% 100.0% FEMALE Count 103 431 59 173 95 861 % within RESPONDENTS SEX 12.0% 50.1% 6.9% 20.1% 11.0% 100.0% Total Count 195 758 102 319 176 1550 % within RESPONDENTS SEX 12.6% 48.9% 6.6% 20.6% 11.4% 100.0% BLACK RESPONDENTS SEX MALE Count 32 60 13 118 % within RESPONDENTS SEX 27.1% 50.8% 4.2% 11.0% 6.8% 100.0% FEMALE Count 31 102 28 20 12 193
% within RESPONDENTS SEX<br>16.1%<br>52.8%<br>14.5%<br>10.4%<br>6.2%<br>100.0%<br>Total<br>Count<br>63<br>162<br>33<br>33<br>20<br>311<br>% within RESPONDENTS SEX<br>20.3%<br>52.1%<br>10.6%<br>10.6%<br>6.4%<br>100.0%<br>OTHER<br>RESPONDENTS SEX<br>MALE<br>Count<br>19<br>40<br>3<br>11<br>11<br>84<br>within RESPONDENTS SEX<br>22.6%<br>47.6%<br>3.6%<br>13.1%<br>13.1%<br>100.0%<br>FEMALE<br>Count<br>28<br>41<br>7<br>12<br>11<br>99<br>% within RESPONDENTS SEX<br>28.3%<br>41.4%<br>7.1%<br>12.1%<br>11.1%<br>100.0%<br>Total<br>Count<br>47<br>81<br>10<br>23<br>22<br>183<br>% within RESPONDENTS SEX<br>25.7%<br>44.3%<br>5.5%<br>12.6%<br>12.0%<br>100.0%<br>Total<br>RESPONDENTS SEX<br>MALE<br>Count<br>143<br>427<br>51<br>170<br>100<br>891<br>% within RESPONDENTS SEX<br>16.0%<br>47.9%<br>5.7%<br>19.1%<br>11.2%<br>100.0%<br>FEMALE<br>Count<br>162<br>574<br>94<br>205<br>118<br>1153<br>% within RESPONDENTS SEX<br>14.1%<br>49.8%<br>8.2%<br>17.8%<br>10.2%<br>100.0%<br>Total<br>Count<br>305<br>1001<br>145<br>375<br>218<br>2044<br>% within RESPONDENTS SEX<br>14.9%<br>49.0%<br>7.1%<br>18.3%<br>10.7%<br>100.0%<br>Chi-Square Tests<br>Asymptotic<br>Significance (2-<br>sided)<br>RACE OF RESPONDENT<br>Value<br>df<br>WHITE<br>Pearson Chi-Square<br>1.733<br>4<br>0.785<br>Likelihood Ratio<br>1.732<br>4<br>0.785<br>Linear-by-Linear Association<br>0.137<br>1<br>0.711<br>N of Valid Cases<br>1550<br>BLACK<br>Pearson Chi-Square<br>11.821°<br>4<br>0.019<br>Likelihood Ratio<br>12.741<br>4<br>0.013<br>Linear-by-Linear Association<br>2.016<br>1<br>0.156<br>N of Valid Cases<br>311<br>OTHER<br>Pearson Chi-Square<br>2.164<br>0.706<br>Likelihood Ratio<br>2.205<br>4<br>0.698<br>Linear-by-Linear Association<br>0.265<br>0.607<br>N of Valid Cases<br>183<br>Total<br>Pearson Chi-Square<br>6.804<br>4<br>0.147<br>Likelihood Ratio<br>6.879<br>4<br>0.142<br>Linear-by-Linear Association<br>0.042<br>1<br>0.837<br>N of Valid Cases<br>2044<br>a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 63.21.<br>b. 0 cells (.0%) have expected count less than 5. The minimum expected count is 45.34.<br>c. O cells (.0%) have expected count less than 5. The minimum expected count is 7.59.<br>d. 1 cells (10.0%) have expected count less than 5. The minimum expected count is 4.59.<br>Symmetric Measures<br>Asymptotic<br>Standard Errora<br>Approximate<br>Significance<br>RACE OF RESPONDENT<br>Value<br>Approximate T<br>WHITE<br>Nominal by Nominal<br>Phi<br>0.033<br>0.785<br>Cramer's V<br>0.033<br>0.785<br>Ordinal by Ordinal<br>Gamma<br>Zero-Order<br>-0.008<br>0.040<br>-0.196<br>0.845<br>N of Valid Cases<br>1550<br>BLACK<br>Nominal by Nominal<br>Phi<br>0.195<br>0.019<br>Cramer's V<br>0.195<br>0.019<br>Ordinal by Ordinal<br>Gamma<br>Zero-Order<br>0.200<br>0.094<br>2.118<br>0.034<br>N of Valid Cases<br>311<br>OTHER<br>Nominal by Nominal<br>Phi<br>0.109<br>0.706<br>Cramer's V<br>0.109<br>0.706<br>Ordinal by Ordinal<br>Gamma<br>Zero-Order<br>-0.067<br>0.114<br>-0.585<br>0.559<br>N of Valid Cases<br>183<br>Total<br>Nominal by Nominal<br>Phi<br>0.058<br>0.147<br>Cramer's V<br>0.058<br>0.147<br>Ordinal by Ordinal<br>Gamma<br>Zero-Order<br>0.007<br>0.035<br>0.201<br>0.841<br>First-Order Partial<br>-0.001<br>N of Valid Cases<br>2044<br>a. Not assuming the null hypothesis.<br>b. Using the asymptotic standard error assuming the null hypothesis.<br>

Extracted text: % within RESPONDENTS SEX 16.1% 52.8% 14.5% 10.4% 6.2% 100.0% Total Count 63 162 33 33 20 311 % within RESPONDENTS SEX 20.3% 52.1% 10.6% 10.6% 6.4% 100.0% OTHER RESPONDENTS SEX MALE Count 19 40 3 11 11 84 within RESPONDENTS SEX 22.6% 47.6% 3.6% 13.1% 13.1% 100.0% FEMALE Count 28 41 7 12 11 99 % within RESPONDENTS SEX 28.3% 41.4% 7.1% 12.1% 11.1% 100.0% Total Count 47 81 10 23 22 183 % within RESPONDENTS SEX 25.7% 44.3% 5.5% 12.6% 12.0% 100.0% Total RESPONDENTS SEX MALE Count 143 427 51 170 100 891 % within RESPONDENTS SEX 16.0% 47.9% 5.7% 19.1% 11.2% 100.0% FEMALE Count 162 574 94 205 118 1153 % within RESPONDENTS SEX 14.1% 49.8% 8.2% 17.8% 10.2% 100.0% Total Count 305 1001 145 375 218 2044 % within RESPONDENTS SEX 14.9% 49.0% 7.1% 18.3% 10.7% 100.0% Chi-Square Tests Asymptotic Significance (2- sided) RACE OF RESPONDENT Value df WHITE Pearson Chi-Square 1.733 4 0.785 Likelihood Ratio 1.732 4 0.785 Linear-by-Linear Association 0.137 1 0.711 N of Valid Cases 1550 BLACK Pearson Chi-Square 11.821° 4 0.019 Likelihood Ratio 12.741 4 0.013 Linear-by-Linear Association 2.016 1 0.156 N of Valid Cases 311 OTHER Pearson Chi-Square 2.164 0.706 Likelihood Ratio 2.205 4 0.698 Linear-by-Linear Association 0.265 0.607 N of Valid Cases 183 Total Pearson Chi-Square 6.804 4 0.147 Likelihood Ratio 6.879 4 0.142 Linear-by-Linear Association 0.042 1 0.837 N of Valid Cases 2044 a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 63.21. b. 0 cells (.0%) have expected count less than 5. The minimum expected count is 45.34. c. O cells (.0%) have expected count less than 5. The minimum expected count is 7.59. d. 1 cells (10.0%) have expected count less than 5. The minimum expected count is 4.59. Symmetric Measures Asymptotic Standard Errora Approximate Significance RACE OF RESPONDENT Value Approximate T WHITE Nominal by Nominal Phi 0.033 0.785 Cramer's V 0.033 0.785 Ordinal by Ordinal Gamma Zero-Order -0.008 0.040 -0.196 0.845 N of Valid Cases 1550 BLACK Nominal by Nominal Phi 0.195 0.019 Cramer's V 0.195 0.019 Ordinal by Ordinal Gamma Zero-Order 0.200 0.094 2.118 0.034 N of Valid Cases 311 OTHER Nominal by Nominal Phi 0.109 0.706 Cramer's V 0.109 0.706 Ordinal by Ordinal Gamma Zero-Order -0.067 0.114 -0.585 0.559 N of Valid Cases 183 Total Nominal by Nominal Phi 0.058 0.147 Cramer's V 0.058 0.147 Ordinal by Ordinal Gamma Zero-Order 0.007 0.035 0.201 0.841 First-Order Partial -0.001 N of Valid Cases 2044 a. Not assuming the null hypothesis. b. Using the asymptotic standard error assuming the null hypothesis.
Jun 08, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here