Question 1. The rank of a formula is defined by recursion on formulas: • rk(A) = 0 for every basic formula. • rk(¬A) = rk(A) + 1. • rk(A o B) = max(rk(A), rk(B)) + 1 for o € {A, V}. %3D rk(A → B) =...

please send handwritten solution for Q 1Question 1. The rank of a formula is defined by recursion on formulas:<br>• rk(A) = 0 for every basic formula.<br>• rk(¬A) = rk(A) + 1.<br>• rk(A o B) = max(rk(A), rk(B)) + 1 for o € {A, V}.<br>%3D<br>rk(A → B) = max(rk(A) +1, rk(B))<br>Prove by induction on formulas that rk(A) < depth(A) for all formulas A.<br>

Extracted text: Question 1. The rank of a formula is defined by recursion on formulas: • rk(A) = 0 for every basic formula. • rk(¬A) = rk(A) + 1. • rk(A o B) = max(rk(A), rk(B)) + 1 for o € {A, V}. %3D rk(A → B) = max(rk(A) +1, rk(B)) Prove by induction on formulas that rk(A) < depth(a)="" for="" all="" formulas="">
Example of a function defined by recursion on formulas<br>We define the depth of a formula as follows<br>• depth(A) = 0 for every basic formula.<br>depth(¬A) = depth(A) +1.<br>depth(A o B) = max(depth(A), depth(B)) + 1 for ● E {A, V, →}.<br>We also let con(A) be the number of occurrences of logical connectives (A, V, →, -)<br>in the formula A.<br>Lemma 2. con(A) < 2depth(4).<br>Proof. By induction on formulas.<br>Induction base: If A is a basic formula, then con(A) = 0 < 1 = 2º = 2depth(A).<br>Induction step: We have to consider composite formulas.<br>¬A: By induction hypothesis (i.h.) we have con(A) < 2depth(4). Therefore<br>con(¬A)<br>con(A) + 1<br>i.h.<br>< 2depth(A) + 1<br>< 2 * 2depth(A)<br>2depth(4)+1<br>2depth(¬A)<br>Ao B where o € {A, V,→}: By induction hypothesis we have con(A) < 2depth(A) and<br>con(B) < 2depth(B).<br>con(A o B)<br>con(A) + con(B) + 1<br>< con(A) +1+ con(B) +1<br>i.h.<br>< 2depth(A) + 2depth(B)<br>< 2* 2max(depth(A),depth(B))<br>2depth(AoB)<br>This completes the proof.<br>||||<br>

Extracted text: Example of a function defined by recursion on formulas We define the depth of a formula as follows • depth(A) = 0 for every basic formula. depth(¬A) = depth(A) +1. depth(A o B) = max(depth(A), depth(B)) + 1 for ● E {A, V, →}. We also let con(A) be the number of occurrences of logical connectives (A, V, →, -) in the formula A. Lemma 2. con(A) < 2depth(4).="" proof.="" by="" induction="" on="" formulas.="" induction="" base:="" if="" a="" is="" a="" basic="" formula,="" then="" con(a)="0">< 1="2º" =="" 2depth(a).="" induction="" step:="" we="" have="" to="" consider="" composite="" formulas.="" ¬a:="" by="" induction="" hypothesis="" (i.h.)="" we="" have="" con(a)="">< 2depth(4).="" therefore="" con(¬a)="" con(a)="" +="" 1="" i.h.="">< 2depth(a)="" +="" 1="">< 2="" *="" 2depth(a)="" 2depth(4)+1="" 2depth(¬a)="" ao="" b="" where="" o="" €="" {a,="" v,→}:="" by="" induction="" hypothesis="" we="" have="" con(a)="">< 2depth(a)="" and="" con(b)="">< 2depth(b).="" con(a="" o="" b)="" con(a)="" +="" con(b)="" +="" 1="">< con(a)="" +1+="" con(b)="" +1="" i.h.="">< 2depth(a)="" +="" 2depth(b)="">< 2*="" 2max(depth(a),depth(b))="" 2depth(aob)="" this="" completes="" the="" proof.="">

Jun 04, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here