Purpose This assignment provides an opportunity to develop, evaluate, and apply bivariate and multivariate linear regression models. Resources:Microsoft Excel®, DAT565_v3_Wk5_Data_File Instructions:...

1 answer below »

Purpose


This assignment provides an opportunity to develop, evaluate, and apply bivariate and multivariate linear regression models.






Resources:Microsoft Excel®, DAT565_v3_Wk5_Data_File






Instructions:


The Excel file for this assignment contains a database with information about the tax assessment value assigned to medical office buildings in a city. The following is a list of the variables in the database:




  • FloorArea: square feet of floor space


  • Offices: number of offices in the building


  • Entrances: number of customer entrances


  • Age: age of the building (years)


  • AssessedValue: tax assessment value (thousands of dollars)






Use the data to construct a model that predicts the tax assessment value assigned to medical office buildings with specific characteristics.







  • Construct a scatter plot in Excel with
    FloorArea
    as the independent variable and
    AssessmentValue
    as the dependent variable. Insert the bivariate linear regression equation and r^2 in your graph. Do you observe a linear relationship between the 2 variables?

  • Use Excel’s Analysis ToolPak to conduct a regression analysis of
    FloorArea
    and
    AssessmentValue. Is
    FloorArea

    a significant predictor of
    AssessmentValue?

  • Construct a scatter plot in Excel with
    Age
    as the independent variable and
    AssessmentValue
    as the dependent variable. Insert the bivariate linear regression equation and r^2 in your graph. Do you observe a linear relationship between the 2 variables?

  • Use Excel’s Analysis ToolPak to conduct a regression analysis of Age and Assessment Value. Is
    Age
    a significant predictor of
    AssessmentValue?






Construct a multiple regression model.



  • Use Excel’s Analysis ToolPak to conduct a regression analysis with
    AssessmentValue
    as the dependent variable and
    FloorArea,
    Offices,
    Entrances, and
    Age
    as independent variables. What is the overall fit r^2? What is the adjusted r^2?

  • Which predictors are considered significant if we work with α=0.05? Which predictors can be eliminated?

  • What is the final model if we only use
    FloorArea
    and Offices as predictors?

  • Suppose our final model is:


  • AssessedValue
    = 115.9 + 0.26 x
    FloorArea
    + 78.34 x
    Offices

  • What wouldbe the assessed value of a medical office building with a floor area of 3500 sq. ft., 2 offices, that was built 15 years ago? Is this assessed value consistent with what appears in the database?

Answered Same DayMay 08, 2021

Answer To: Purpose This assignment provides an opportunity to develop, evaluate, and apply bivariate and...

Shakeel answered on May 09 2021
146 Votes
Regression Modeling Data
    FloorArea (Sq.Ft.)    Offices    Entrances    Age    AssessedValue ($'000)
    4790    4    2    8    1796
    4720    3    2    12    1544
    5940    4    2    2    2094
    5720    4    2    34    1968
    3660    3    2    38    
1567
    5000    4    2    31    1878
    2990    2    1    19    949
    2610    2    1    48    910
    5650    4    2    42    1774
    3570    2    1    4    1187
    2930    3    2    15    1113
    1280    2    1    31    671
    4880    3    2    42    1678
    1620    1    2    35    710
    1820    2    1    17    678
    4530    2    2    5    1585
    2570    2    1    13    842
    4690    2    2    45    1539
    1280    1    1    45    433
    4100    3    1    27    1268
    3530    2    2    41    1251
    3660    2    2    33    1094
    1110    1    2    50    638
    2670    2    2    39    999
    1100    1    1    20    653
    5810    4    3    17    1914
    2560    2    2    24    772
    2340    3    1    5    890
    3690    2    2    15    1282
    3580    3    2    27    1264
    3610    2    1    8    1162
    3960    3    2    17    1447
Simple Regression
                                            SUMMARY OUTPUT
                                            Regression Statistics
                                            Multiple R    0.9683582089
                                            R Square    0.9377176208
                                            Adjusted R Square    0.9356415415
                                            Standard Error    115.5993039377
                                            Observations    32
                                            ANOVA
                                                df    SS    MS    F    Significance F
                                            Regression    1    6035851.90287359    6035851.90287359    451.6771673353    1.22547865240093E-19
                                            Residual    30    400895.972126411    13363.1990708804
                                            Total    31    6436747.875
        Yes, there is a linear relationship betwene both variables.                                        Coefficients    Standard Error    t Stat    P-value    Lower 95%    Upper 95%    Lower 95.0%    Upper 95.0%
                                            Intercept    162.6627672772    54.4785653123    2.9858122428    0.0055856115    51.4026942588    273.9228402955    51.4026942588    273.9228402955
                                            FloorArea (Sq.Ft.)    0.306732084    0.0144326187    21.2526978837    1.22547865240093E-19    0.2772567446    0.3362074235    0.2772567446    0.3362074235
                                            Since, the p-value of Floor area is less than 0.05, it is concluded that Floor area is significantly related to the Assessed value.
                                            SUMMARY...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here