Prove Theorem 8.2. Hint: Step (1). With h = k, follow the line of the proof of Theorem 8.1 until (8.4):                                   n j=1 (m(h) n,j (Xj ) − Yj ) 2 − n j=1 (m(h) n,j (X j ) − Y  j...


Prove Theorem 8.2. Hint: Step (1). With h = k, follow the line of the proof of Theorem 8.1 until (8.4):


                                  n j=1 (m(h) n,j (Xj ) − Yj ) 2 − n j=1 (m(h) n,j (X j ) − Y  j ) 2


                                 ≤ 4L2 + 4L n j=2 |m(h) n,j (Xj ) − m(h) n,j (Xj )|.


Step (2). Apply Corollary 6.1 to show that


                                n j=2 |m(k) n,j (Xj ) − m(k) n,j (Xj )| ≤ 4Lγd.


According to Corollary 6.1,


                                 n j=2 |m(k) n,j (Xj ) − m(k) n,j (Xj )|


                                = n j=2 1 k Y1I{X1 among X1,...,Xj−1,Xj+1,...,Xn is one of the k NNs of Xj}


                               1 k l∈{2,...,n}−{j} YlI{Xl among X1,...,Xj−1,Xj+1,...,Xn is one of the k NNs of Xj}


                                −1 k Y 1 I{X 1 among X 1,...,Xj−1,Xj+1,...,Xn is one of the k NNs of Xj} −1 k l∈{2,...,n}−{j}


                              YlI{Xl among X 1,...,Xj−1,Xj+1,...,Xn is one of the k NNs of Xj}


                       ≤ 1 kL n j=2 I{X1 among X1,...,Xj−1,Xj+1,...,Xn is one of the k NNs of Xj}


                       + 1 kL n j=2 I{X 1 among X 1,...,Xj−1,Xj+1,...,Xn is one of the k NNs of Xj}


                        + 1 kL n j=2 l∈{2,...,n}−{j}


                        I{Xl among X1,...,Xj−1,Xj+1,...,Xn is one of the k NNs of Xj}


                      −I{Xl among X 1,...,Xj−1,Xj+1,...,Xn is one of the k NNs of Xj}


                      ≤ Lγd + Lγd + 2Lγd.

May 23, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here