Prove Theorem 25.6. Hint: Put m                         ¯ n(x) = ‑ An(x) m(z)µ(dz) µ(An(x)) , then, by Lemma 24.10,                               m¯ n(x) → m(x) mod µ.  Moreover,...


Prove Theorem 25.6. Hint: Put m


                        ¯ n(x) = ‑ An(x) m(z)µ(dz) µ(An(x)) ,


then, by Lemma 24.10,


                              m¯ n(x) → m(x) mod µ.


 Moreover,


                                mn(x) = n i=1 YiI{Xi∈An(x)}  nµ(An(x)) n i=1 I{Xi∈An(x)} nµ(An(x))


therefore, it is enough to show that


                               n i=1 YiI{Xi∈An(x)} nµ(An(x)) − m¯ n(x) → 0 a.s. mod µ


By Bernstein’s inequality


                                      P  n i=1 YiI{Xi∈An(x)} nµ(An(x)) − m¯ n(x) >


                                     ≤ 2e −n2 µ(An(x))2 2 Var(Y1I{X1∈An(x)})+4Lµ(An(x))/3


                                      ≤ 2e −n2 µ(An(x))2 2L2µ(An(x))+4Lµ(An(x))/3


                                      ≤ 2e −n2 µ(An(x)) λ(An(x)) λ(An(x)) 2L2+4L/3 ,


which is summable because of the condition and because of


                             lim inf n→∞ µ(An(x)) λ(An(x)) > 0 mod µ


 (cf. Lemma 24.10).

May 03, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here