Prove that f(X;n,p)/f(x - l; n, p) (n - x + l)p/x(l - p). Using this fact show that (a) If np + p =1, then f(O;n,p) f(l;n,p) > f(2;n,p) > ... > f(n;n,p). (b) If np + p = k an integer greater than 1,...



Prove that f(X;n,p)/f(x - l; n, p) (n - x + l)p/x(l - p).


Using this fact show that


(a) If np + p =1, then f(O;n,p) f(l;n,p) > f(2;n,p) >


... > f(n;n,p).


(b) If np + p = k an integer greater than 1, then f(O;n,p)


••• <> ••• > f(n;n,p).


(c) If np +pis not an integer, show that for k0 = [np + p],


f(O;n,p) <><> f(k0 + l; n, p) > ••• >


f(n;n,p).



May 26, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here