Prove that f(X;n,p)/f(x - l; n, p) (n - x + l)p/x(l - p).
Using this fact show that
(a) If np + p =1, then f(O;n,p) f(l;n,p) > f(2;n,p) >
... > f(n;n,p).
(b) If np + p = k an integer greater than 1, then f(O;n,p)
••• <> ••• > f(n;n,p).
(c) If np +pis not an integer, show that for k0 = [np + p],
f(O;n,p) <><> f(k0 + l; n, p) > ••• >
f(n;n,p).
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here