Prove that, for σ2(x) ≥ c1 > 0,
Emn − m2 ≥ c2 nhd n
with some constant c2 (cf. Beirlant and Gy¨orfi (1998)).
Hint: Take the lower bound of the first term in the right-hand side in the decomposition (4.4).
Let the random variable B(n, p) be binomially distributed with parameters n and p. Then
E 1 B(n, p) I{B(n,p)>0} ≥ 1 np (1 − (1 − p) n) 2 .
Hint: Apply the Jensen inequality
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here