Prove Lemma 21.1. Hint: Start with the error decomposition                                |mn,(k,λ)(x) − m(x)| 2 µ(dx) = T1,n + T2,n, where T1,n = E F |mn,(k,λ)(X) − Y | 2 |Dn G − E(|m(X) − Y | 2 )...


Prove Lemma 21.1. Hint: Start with the error decomposition


                               |mn,(k,λ)(x) − m(x)| 2 µ(dx) = T1,n + T2,n,


where


T1,n = E F |mn,(k,λ)(X) − Y | 2 |Dn G − E(|m(X) − Y | 2 )


                                   −2  1 n n i=1 |mn,(k,λ)(Xi) − Yi| 2 + λJ2 k ( ˜mn,(k,λ))


                                   − 1 n n i=1 |m(Xi) − Yi| 2 + penn(k, λ)


and


           T2,n = 2  1 n n i=1 |mn,(k,λ)(Xi) − Yi| 2 + λJ2 k ( ˜mn,(k,λ)) − 1 n n i=1 |m(Xi) − Yi| 2 + penn(k, λ) .


As in the proof of Theorem 21.2 show, for n sufficiently large and any t > 0,


                            P{T1,n > t} ≤ ∞ l=1 c3 exp  −c4 n(t + 2l penn(k, λ)) L4  ≤ c3 exp  −c4 n · t L4  .


Conclude


                         P  T1,n > L4 log(n) n  ≤ c3 · exp(−c4 log(n)) ≤ η


for n sufficiently large, which implies the assertion.

May 23, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here