Prove (6.2). Hint:
Step (a). E(mn(x) − m(x))2 ≥ E(mn(x) − E{mn(x)|X1,...Xn}) 2 + (E{mn(x)} − m(x))2 .
Step (b). E{(mn(x) − E{mn(x)|X1,...Xn}) 2 } = 1 kn .
Step (c). Observe that the function E{mn(x)|X1,...,Xn} = 1 kn kn i=1 X(i,n)(x)
is a monotone increasing function of x, therefore
E{mn(x)|X1,...,Xn} ≥ 1 kn kn i=1 X(i,n)(0).
Let X∗ 1 ,...,X∗ n be the ordered sample of X1,...,Xn, then X(i,n)(0) = X∗ i , and so
E{mn(x)} ≥ E 1 kn kn i=1 X∗ i = αkn .
Thus
1 0 (E{mn(x)} − m(x))2 µ(dx) ≥ α3 kn 3 .
Step (d). αkn = 1 2 kn n + 1 .