Prove (5.7). Hint: Step (a). Let A be the event that X1, X2 ∈ [h/2, 3h/2], X3,...,Xn ∈ [5h/2, 1], and Y1 = Y2. Then P{A} > 0 and                 E  (mn(x)−m(x))2 µ(dx) = E  mn(x) 2 dx ≥  E...


Prove (5.7).


Hint: Step (a). Let A be the event that X1, X2 ∈ [h/2, 3h/2], X3,...,Xn ∈ [5h/2, 1], and Y1 = Y2. Then P{A} > 0 and


                E  (mn(x)−m(x))2 µ(dx) = E  mn(x) 2 dx ≥  E




|mn(x)|dx|A  P{A} 2 .


Step (b). Given A, on [h/2, 3h/2], the locally linear kernel estimate mn has the form


                    mn(x) = ±2 ∆ (x − c),


where ∆ = |X1 − X2| and h/2 ≤ c ≤ 3h/2. Then


                      E




|mn(x)|dx|A  ≥ E  2 ∆


3h/2 h/2 |x − h|dx|A .


Step (c).


                     E  1 ∆|A  = E  1 ∆ = ∞.



May 03, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here