Prove XXXXXXXXXXHint: Step (a).                               E(mn(x) − m(x))2 ≥ E(mn(x) − E{mn(x)|X1,...Xn}) 2 + (E{mn(x)} − m(x))2 . Step (b).                             E(mn(x) −...


Prove (5.2). Hint:


Step (a).


                              E(mn(x) − m(x))2 ≥ E(mn(x) − E{mn(x)|X1,...Xn}) 2 + (E{mn(x)} − m(x))2 .


Step (b).


                            E(mn(x) − E{mn(x)|X1,...Xn}) 2


                             = 1 n{µ([x − hn, x + hn]) P{µn([x − hn, x + hn]) > 0}2 .


Step (c).


                      E




1 0 (mn(x) − E{mn(x)|X1,...Xn}) 2 µ(dx)


                        ≥




1−hn hn 1 2nhn (1 − (1 − 2hn) n) 2 dx


                         ≥ 1 + o(1) 2nhn .


Step (d).


                 (E{mn(x)} − m(x))2


                  =  nE  X1I{|X1−x|≤hn} E  1 1 + n i=2 I{|Xi−x|≤hn}  − x 2 .


Step (e). Fix 0 ≤ x ≤ hn/2,


                            then E  X1I{|X1−x|≤hn} = (x + hn) 2 2 ,


Step (f).


                                 E  1 1 + n i=2 I{|Xi−x|≤hn}  ≥ 1 1+(n − 1)(x + hn) .


Step (g). For large nhn,


                              nE  X1I{|X1−x|≤hn} E  1 1 + n i=2 I{|Xi−x|≤hn}  ≥ x + hn 3 ≥ x.


Step (h). For large nhn,






1 0 (E{mn(x)} − m(x))2 µ(dx) ≥


hn/2 0 x + hn 3 − x 2 dx = h3 n 54 .

May 03, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here