· Project Description/Outline: Our goal is to analyze Traffic violations data for the major US cities. With our analysis, we want to understand what are the primary reasons for violations, demography,...

1 answer below »

·
Project Description/Outline:


Our goal is to analyze Traffic violations data for the major US cities. With our analysis, we want to understand what are the primary reasons for violations, demography, areas prone to traffic-related citations, etc. We think we would also be able to demystify common assumptions at the end of the analysis.


Additional analysis based on linear regression , Standard Deviation, Correlation etc......



·
Data sets to be used


Traffic violations data from Kaggle.com



https://www.kaggle.com/felix4guti/traffic-violations-in-usa/downloads/traffic-violations-in-usa.zip/1



·
Breakdown


1. Import Data (CSV)


2. Data preparation (creating a data frame, grouping, cleaning irrelevant data)


3. Gathering relevant data (Race, Gender, Driver City/State, Location of violation, Longitude, Latitude)


4. Visualize the Data


5. Generate Insights


6. Presentation




1. Identify data sources


2. Define strategy and metrics


3. Build Data Retrieval Plan


4. Retrieve the data


5. Assemble and Clean the data


6. Plots and Graphs using Matplotlib


7. Analyze for trends


8. Acknowledge the limitations



DO the through Analysis and plot the data and stastics that makes sense and is presentable in a professional manner

Answered Same DayMar 14, 2021

Answer To: · Project Description/Outline: Our goal is to analyze Traffic violations data for the major US...

Ximi answered on Mar 15 2021
136 Votes
{
"cells": [
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [],
"source": [
"#imports\n",
"import re\n",
"import warnings\n",
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"\n",
"#Setting environment variables\n",
"pd.options.display.max_columns = 50\n",
"warnings.filterwarnings(\"ignore\")\n",
"sns.set_style(\"darkgrid\")\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data Ingestion\n",
"1. Reading data using Pandas. Pandas is very powerful and popular library to deal with CSV data in a DataFrame format.\n",
"2. Loading 10,000 rows only to avoid memory issues. Pandas provides generator functions also to account for data which are memory bound."
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"#############################\n",
"# READING DATA \n",
"# 1. IMPORTING DATA INTO PANDAS DATAFRAME\n",
"# 2. LOADING 10K ROWS DUE TO OUT OF MEMORY ERROR\n",
"#############################\n",
"\n",
"df = pd.read_csv(\"Traffic_Violations.csv\", nrows=10000)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data Overview\n",
"1. Dataframe properties depicting data type identified in each data field/column\n",
"2. Cleaning data of values which are NaNs.\n",
"3. Replacing NaNs with 0s to avoid data information loss"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data Dimensions\n",
"Rows 10000, Columns 35\n",
"Date Of Stop object\n",
"Time Of Stop object\n",
"Agency object\n",
"SubAgency object\n",
"Description object\n",
"Location object\n",
"Latitude float64\n",
"Longitude float64\n",
"Accident object\n",
"Belts object\n",
"Personal Injury object\n",
"Property Damage object\n",
"Fatal object\n",
"Commercial License object\n",
"HAZMAT object\n",
"Commercial Vehicle object\n",
"Alcohol object\n",
"Work Zone object\n",
"State object\n",
"VehicleType object\n",
"Year float64\n",
"Make object\n",
"Model object\n",
"Color object\n",
"Violation Type object\n",
"Charge object\n",
"Article object\n",
"Contributed To Accident object\n",
"Race object\n",
"Gender
object\n",
"Driver City object\n",
"Driver State object\n",
"DL State object\n",
"Arrest Type object\n",
"Geolocation object\n",
"dtype: object\n",
"NULL values for each column\n",
" Column name\n",
"Date Of Stop 0\n",
"Time Of Stop 0\n",
"Agency 0\n",
"SubAgency 0\n",
"Description 0\n",
"Location 0\n",
"Latitude 770\n",
"Longitude 770\n",
"Accident 0\n",
"Belts 0\n",
"Personal Injury 0\n",
"Property Damage 0\n",
"Fatal 0\n",
"Commercial License 0\n",
"HAZMAT 0\n",
"Commercial Vehicle 0\n",
"Alcohol 0\n",
"Work Zone 0\n",
"State 0\n",
"VehicleType 0\n",
"Year 74\n",
"Make 0\n",
"Model 0\n",
"Color 133\n",
"Violation Type 0\n",
"Charge 0\n",
"Article 323\n",
"Contributed To Accident 0\n",
"Race 0\n",
"Gender 0\n",
"Driver City 11\n",
"Driver State 0\n",
"DL State 8\n",
"Arrest Type 0\n",
"Geolocation 770\n",
"NULL values % for each column\n",
" Column name\n",
"Date Of Stop 0.00\n",
"Time Of Stop 0.00\n",
"Agency 0.00\n",
"SubAgency 0.00\n",
"Description 0.00\n",
"Location 0.00\n",
"Latitude 7.70\n",
"Longitude 7.70\n",
"Accident 0.00\n",
"Belts 0.00\n",
"Personal Injury 0.00\n",
"Property Damage 0.00\n",
"Fatal 0.00\n",
"Commercial License 0.00\n",
"HAZMAT 0.00\n",
"Commercial Vehicle 0.00\n",
"Alcohol 0.00\n",
"Work Zone 0.00\n",
"State 0.00\n",
"VehicleType 0.00\n",
"Year 0.74\n",
"Make 0.00\n",
"Model 0.00\n",
"Color 1.33\n",
"Violation Type 0.00\n",
"Charge 0.00\n",
"Article 3.23\n",
"Contributed To Accident 0.00\n",
"Race 0.00\n",
"Gender 0.00\n",
"Driver City 0.11\n",
"Driver State 0.00\n",
"DL State 0.08\n",
"Arrest Type 0.00\n",
"Geolocation 7.70\n"
]
}
],
"source": [
"#############################\n",
"# 1. QUICK OVERVIEW OF DATA\n",
"# 2. DATAFRAME PROPERTIES\n",
"# 3. CLEAN DATA OF NAN/NULL VALUES\n",
"#############################\n",
"print (\"Data Dimensions\")\n",
"print (\"Rows %d, Columns %d\"%(df.shape))\n",
"print (df.dtypes)\n",
"\n",
"\n",
"print (\"NULL values for each column\")\n",
"column_nulls = pd.DataFrame(df.isnull().sum())\n",
"column_nulls.columns = ['Column name']\n",
"print (column_nulls)\n",
"\n",
"print (\"NULL values % for each column\")\n",
"column_nulls_percentage = pd.DataFrame((df.isnull().sum()/df.shape[0])*100)\n",
"column_nulls_percentage.columns = ['Column name']\n",
"print (column_nulls_percentage)\n",
"\n",
"#Filling NaNs with 0\n",
"df = df.fillna(0)"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"# 1. Gathering relevant data for Exploratory Data Analysis\n",
"# 2. Taking only columns which are specified in the assignment\n",
"\n",
"column_names = [\"Race\", \"Gender\", \"Driver City\", \"Driver State\", \\\n",
" \"Location\", \"Longitude\", \"Latitude\", \"Fatal\", \"Violation Type\"]\n",
"df = df[column_names]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data Analysis\n",
"1. Some data analyis on understanding the **trend** of violations accross U.S\n",
"2. Plotting graphs to understand easily\n",
"3. An explanation to make understanding cleaner"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Aggregated count of Violations by RACE\n",
" Race Count\n",
"0 BLACK 3428\n",
"1 WHITE 2960\n",
"2 HISPANIC 2550\n",
"3 ASIAN 540\n",
"4 OTHER 511\n",
"5 NATIVE AMERICAN 11\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA8UAAAR4CAYAAAAvwXRJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XuYnVVh7/FfMpNgQhLCJYgSjqiUpYVWpCrx0kq1okjRKpajeMELF1EiR0BEoyIFFFGhCCoi2IAFFZpqvVCtR42ttlFri3KqriCgJVEoaAIkhEvCnD/2TpwME2ZymUw26/N5njxkv/u9rL0XUb5Z794zYWBgIAAAANCiieM9AAAAABgvohgAAIBmiWIAAACaJYoBAABoligGAACgWaIYAACAZvWP9wAA4OGolPKtJP9Ua33/kO0nJXl2kr9Kcmqt9WUjnGcgyaxa6+0Psc8hSQ6otb6nlPKiJH9Wa33LZr+I353/yCRvTDIlyeQk30lySq11+Za6xqBrPTbJh2qthw3z3MIkF9Za/24Tz/3eJG9OsrS7aUKSGUk+n+SkWqufUwnQIFEMAGPjo0nel+T9Q7YfneQttdZ/T/KQQbwRnppkpySptX4xyRe30HlTSnlnkoOT/EWt9dZSyqQkf53kS0n+eEtdZ5DHJCljcN61PldrPX7tg1LKjkl+nORr3V8ANEYUA8DY+EKS80spf1xr/ZckKaU8O53Vya+XUg5MZ9Vz31LKDulE9H5JBpL8Y5J31lpXrz1ZKWX7JB9Psnc6AXxXkiOSzExnFbevlHJHkuuTvKzW+uellNndY/bsXveyWusHSyl7JvlGkmuSHNA937xa6+cGv4DuNd+Z5Mm11luTpNZ6fynlbUleUkqZ3B3vuUmem2RNku8leWut9a5Syi+6Y/n37vl+kc5fBNw+3PWT/F2SS5LsXkr5Wq31+cO8ry8ppZyaZGqSK2qtZ5VS5iXZp9Z6RPc6z+y+t09+6ClKkjyye65l3WNfn+TYdFbEd0pydq31493n3pHkyCSru+/za2utd5RS3pDkTel8LO03SY6vtf5sFNcGYBvgM8UAMAa6QXtxkjcM2nxMko8Nc5vuR9KJqT9I8pQkT0py8pB9Dk6yvNY6p9a6d5IfpBNf30tyUToroPOGHHNFkm/VWv8gyTOTvKqU8vLuc49L8rVa69OSvD3JOcO8jCckubvWev2Q13Z3rfWKWut9Sd6V5NHdMT8pnf+2+OCG3pdBHnT9WuuaJEcluWEDQZx0bnee0/31qlLKwUk+meSQUspO3X2OTec9Gc7/LqVcW0pZXEr5TZILkhxba/1+KWVaOiv5L+wG9f9O933p3pb+2iRPr7Xum+SmJMd3/6LjyCR/3D3mnCR/P4rXD8A2QhQDwNi5OMmLSynTu8H2/CTzh9nv4HRWNgdqrfemE3QHD96h+zna+aWUuaWU85McmGTahi7cXeV9Zjor0Km13tG99trz3p/OSm2S/Ee6t18P8UBG/m+Fg5NcVGu9v9b6QDqRefAIx4z2+sO5pNa6utZ6Zzory8+rtf5Pki8neXX3dujnp/MXAsP5XK11vyT7JlmQZPt0VuZTa12R5M/TCewz0lm9Xvse/1mSq2uty7r7nlhrPSvJIUn2SvKvpZRr04ninQYFOgDbOFEMAGOk1vrrJF9P8vIkr0nyd904HWro/x9PTDJp8IZSynFJLk1yd5Irk3wmnVuiN2TiMM8PPu993YhNOrdAD3eunySZVErZa8hYHlFKuaaU8ugRxj70vJMH/X401x/OmkG/n5BOXCed+H99OreUL+gG7gZ1V7mPTzI9v1sNnp3k2nQ+1/yddFbB11rdHWe6+87s3obel+TTtdb9urG9fzqr/ctG+XoAGGeiGADG1seSvDKdW2w/uoF9vpbkzaWUCaWU7dK5zfrrQ/Z5fpL5tdZLk9Qkh6YTZEkn2NaL6FrrXUkWpfNty+l+bvk1w5x3g7qr1h9I8qlSyiO759kuyXlJtq+1/qo79jeWUiaVUiZ2r7f2GrelE4gppcxJ8qhRXPZBr2WI13Tfpx3Tub157Srvv6azsn1yOp+jHs3ruy/JcUmOLaWsjdnbkpxZa/1aOqvGKaX0Jfm/SV5aSpnRPfy9SU5M8k9JXlFKWfva3pjO56UB6BGiGADGUK11YZKdk9xZa71uA7u9JcmuSa7r/qpJzhqyz4fSibdr04mu/0jntt10H7+olHLBkGNemeS5pZTrknw/nduF52/k+N/XPe5r3Wv/KJ0V2hd3dzkzyS3prLD+NJ2gPaH73NuTnNA97ugkPxzFJf8ryZpSyvdLKcOtHt/RPc+/Jrmg+/6u9TdJfvUQ7/Nwr+876dxqfWE6Mb8kSS2l/GeS/5VOJO9Va72me/7vdt/P3dL5crKvpfMXB18vpfw4nZXql/rxTgC9Y8LAgP/NBgB6WymlP52fN/y3Q79FGwAeipViAKCnlVJ+P50V3TuTXD3OwwGgx1gpBgAAoFlWigEAAGiWKAYAAKBZohgAAIBm9Y/3ABgbDzzwwMCaNdvO58X7+iZkWxoPo2fuepe5623mr3eZu95m/nqXuetdYzV3kyb13Z5k1kj7ieKHqTVrBrJ8+d3jPYx1Zs6cuk2Nh9Ezd73L3PU289e7zF1vM3+9y9z1rrGau1mzpv9yNPu5fRoAAIBmiWIAAACaJYoBAABols8UAwAAjGDNmtVZtuy2rF5933gP5WHn1lsnZGBg079oq79/cnbccVb6+jYtb0UxAADACJYtuy2PeMTUbL/9bpkwYcJ4D+dhpa9vYtaseWCTjh0YGMjKlXdm2bLbsssuj9qkc7h9GgAAYASrV9+X7befIYi3MRMmTMj228/YrBV8UQwAADAKgnjbtLnzIooBAAC2cccff0x++MMfrLftr//6Q/nSl76Q88//cG655ZYNHvuylx2ae++9d4PPf/vb38rtt9+W3/zm9nzoQ2dv1jgfeOCBXH75p/KmNx2V448/JnPnHpsbbvj5Zp1zsGuv/Y/8/OfXb7HzJaIYAABgi1uw+Krsf/k+eeTHdsj+l++TBYuv2qzzHXroX+SrX/3Kusf3339/vvvdf8mf/dnzc8IJJ2W33Xbb5HNfffVnsnLlyuy88y45+eRTN2ucV1xxee64Y3kuvPDiXHjhxXnTm96SU089KatXr96s8671la98MbffftsWOddavmgLAABgC1qw+KqcuHBuVq1elSRZsuLmnLhwbpLksL0P36RzHnjgc/OJT3w099xzTx7xiEfkX/7l23na0w7IlClTcvzxx+Rtb3tndtpp55xxxruzcuXKrFmzJkcffVz+6I+euu4cN97481xwwXl54IEHsnz58px88qm566678vOfL86ZZ74n7373GTnzzNNy8cXz84MfLMrFF3882223XWbM2CHveMd7cv31NVdccXkmTerPr361NM997kE58sg3rDfOL37x87n00k9n4sTO+usTn7hPLrnksvT392fx4p/lvPM+mL6+vkyePDmnnPKuDAw8kPe+9535xCfmJ0mOOea1Of309+Waa76UX//6V1m2bFluvfXXmTv3xOyww8x873v/lsWLf5Y993zcZv1FwGBWigEAALagsxadvi6I11q1elXOWnT6Jp9zu+22y5/8yYH553/+VpLkmmu+mBe/+KXr7XPZZZfmKU85IB/96Cdzxhln5+yzz1jvRx3ddNONOf74t+b88z+eV77yyFxzzZfyjGc8K3vttXfe9a6/yqRJk5J0vtH5nHPel/e974O58MKLs99+++eyyy5Nktx6669z5pnn5BOfmJ8rr7z8QeO89957MmPGjPW27bDDzCTJBz5wVk488ZRceOHFeclLXpYLLzz3IV/zpEmT8+EPfyQnnHBSPve5K/OEJzwxBxzw9Bx33Fu2WBAnohgAAGCLWrpiyUZtH61DD31JvvrVa3Lbbf+Tu+66K3vv/YT1nv/lL2/Kfvs9OUkya9aumTp1+yxb9tt1z++yy66ZP/+SnHnmaVm48BsbvKV5+fLlmTp1+8yatWuSZL/9npybbroxSfK4x+2V/v7+TJkyJdtt94gHHTt9+vSsXLlivW3f/va3snLlitx++235vd8rSZInPWn/deccbHDE7713Z99dd90t99234c9Eby5RDAAAsAXtPm32Rm0frcc/fq+sWrUyV1/92RxyyIse9PxjHvPY/OhH1yZJN5zvzIwZO6x7/vzzP5g3vOHYvOtdp+fxj99rXYBOnDgxDzzwu58TPHPmzNx998rcfvvtSTpfbrXHHv8rSTLSFz2/4AV/nk996pPrzn3ddT/KhReel8mTt8suu8xa9yVZa885efLkLFu2LGvWrMldd92VX//6V+vONdy1JkyYkIGBTfuZxhviM8UAAABb0Lw5p633meIkmdI/JfPmnLbZ5z7kkBflox/9SBYs+PKDnnvNa16X97//r7Jw4Tdy77335pRT5qW//3fJd9BBB+fd7357pk+fkVmzds0ddyxPkuy77x/mzDNPyymnzEvSCc9TTpmXefPelokTJ2T69Bl55zvfmxtvHPlbpI844tW55JKLcuyxr0t/f3/6+/tz9tnnZtKkSXn72+flvPPOycDAQPr6+nLqqe/Ozjvvkqc+9YAcffRr8uhHz87s2Xs85Pl///f3zUUXXZhHPWr37LnnYzfmrdugCYOXp3n4uP/+NQPLl9893sNYZ+bMqdmWxsPombveZe56m/nrXeaut5m/3jXWc3fLLb/Mbrs9ZtT7L1h8Vc5adHqWrliS3afNzrw5p23yl2w93PX1TcyaNZu3+jvc/MyaNf2HSZ4y0rFWigEAALaww/Y+XAT3CJ8pBgAAoFmiGAAAgGaJYgAAgFHwfUzbps2dF1EMAAAwgv7+yVm58k5hvI0ZGBjIypV3pr9/8iafwxdtAQAAjGDHHWdl2bLbsmLF8vEeysNO52cPb/pfNvT3T86OO87a9OM3+UgAAIBG9PX1Z5ddHjXew3hYGu8fheb2aQAAAJoligEAAGiWKAYAAKBZohgAAIBmiWIAAACaJYoBAABoligGAACgWaIYAACAZoliAAAAmiWKAQAAaJYoBgAAoFmiGAAAgGaJYgAAAJoligEAAGiWKAYAAKBZohgAAIBmiWIAAACaJYoBAABoligGAACgWaIYAACAZoliAAAAmiWKAQAAaJYoBgAAoFn9W/qEpZQDk/xDkn1rrTd3t52d5Ge11vndx09L8p0kz6y1/qC77YokuyfZM8l9SX6V5LokH07y2SRHJPlGksfVWge6x0xKcn2SJyW5Lcm/DhnOK2utS4cZ47VJvltrffOgbQNJPlFrfeOgbR9J8qJa656llPlJ9k/y20Gn+nSt9dJSyn2Drj0pSV+SV9RabyqlLEzyxlrrz0op+yQ5J8nUJNOSXJPkvYNez+FJ/ibJ79Vaf9Xd9t4kL0zyjFrr6u62RUleXmv9xYNnYNv0mf93ZeZ9c16WrliS3afNzrw5p+WwvQ8f72EBAACN2+JR3HVvkr8ppTxvbfANcXQ6sfvmJK9NklrrK5N1EXhLrfWi7uM9u8/fWEq5IcmzkyzsnudFSb5Za72jlPLbWuuBIw2slPLMdGL7OaWU6bXWu7pP/SbJn5RS+mutq0spfUmeOuTwU2qtXx3mtOtdu5RybJKTkhw/aNvMdOL+pbXW67vnvzrJsUkuGvS+fCTJMUneO+j8eyZ5R5IzRnp926IFi6/KSQvfkrtX350kWbLi5py4cG6SCGMAAGBcjdXt099MZ0X1zUOfKKVMS/KcJKcneWYpZZeNOO8nk7xm0OPXJ7l4I8d2dJK/S/L5JEcO2r46ndh+XvfxQUm+vpHnXusxSZYN2fbidAL++iSpta5J57V8KklKKY9NslOSDyR5dXcVfK1zkryylPLkTRzPuDpr0enrgnitVatX5axFp4/TiAAAADrGaqU4SY5L8v1SytCV1Zcn+fta6z2llM8leUM6ITgan0/yvlLKlCQzk+xWa13UfW6n7q3Kay1du/q8VillRpJnJTkqyU+SfCHJhYN2uTKdaP7HdG7XPjPrR/g5pZRTBz2eW2u9btC1Z6QTtn+f5D1Dxv7oJDcO3lBrXTHo4RuSfKrWuryU8m9JXprkc93nVqSzejy/e+v5iPr6JmTmzKmj2XXMLV2xZIPbt5UxsmF9fRPNU48yd73N/PUuc9fbzF/vMne9a7znbsyiuNb6m1LK/0lyWZLvDnrqqCSru7E8NcnsUsoHa60PjOKc95VSvpDkL9JZjf3UoKdHc/v0K9NZHf9y9/GjSinPrbV+o/v4u0k+VkrZOcnOSX455PiHvH26e0v0/CT3DQnedM+1/+AN3dXhPbrXfVWSm0oph6YT1sfnd1GcWus/l1L+b5K/GuE1JknWrBnI8uV3j7zjVrD7tNlZsuLmYbdvK2Nkw2bOnGqeepS5623mr3eZu95m/nqXuetdYzV3s2ZNH9V+Y/rt07XWLyWp6X5uuJTyB0n6aq3PqrW+oNb6J0luSPLnG3HaS5K8Ip0w/tuNHNJRSQ7tXvsFSeZm0C3e3c8/X5Pk4+msIm+U7i3RxyR5SSnlkCFPfznJC0opj0/WfUnYuUn2TeeLtH5Qa/3T7tieluSRpZQ/HHKOed1999rYsY2neXNOy9T+9f/mZ0r/lMybc9o4jQgAAKBja/xIpv+TZFX390cn+fSQ5z+ZQV9INZJa60/T+ebmn9Ra7xj01E6llIVDfj197ZOllP2TTKi1/tegYxYkeVYpZY9B265I5wu8rh7m8ucMOf+DPhRba12VTnxfUErZftD2O9P5DPMnu7daL0ryo3QCfLj35ZIMeV9qrfckeV2SHYYZ2zbrsL0Pz8dfeFFmT9sjEzIhs6ftkXMPvMCXbAEAAONuwsDAcF8OTa+7//41A9vS7SNuZ+ld5q53mbveZv56l7nrbeavd5m73jWGt0//MMlTRtpva6wUAwAAwDZJFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANKt/vAfQq0opj03yoSQ7J5mU5EdJ3p7kC0n6kjwhyf8k+W2SrydZmuQJtdZTB53js0ku6j68KslPBl3itlrrX5ZS5ifZv3ueCd3rfbjW+jdj9uJgiAWLr8pZi07P0hVLsvu02Zk357Qctvfh4z0sAADYbKJ4E5RSpiT5YpKjaq3f6247Mslnaq3P7T6en+Sztdavdh+/doTTfrPW+vINPHfKoPPslOS/Sinza60Dm/1iYASf+X9X5sSFc7Nq9aokyZIVN+fEhXOTRBgDANDz3D69aQ5J8u21QZwktdbLkuzSXUEeS7sluUcQs7W8e+G71gXxWqtWr8pZi04fpxEBAMCWY6V40zwuyQ3DbL8pyWO6/xzOEaWUOYMe/35+d/v0c0opCwc995Va6we7vz+nlDKve+6fJPnLkQbY1zchM2dOHWm3raavb+I2NR5G7+Y7bx52+9IVS8zpNs6fu95m/nqXuett5q93mbveNd5zJ4o3zdIkTxtm+15J/vshjrtymM8UrzXi7dOllBcm+UCGD/L1rFkzkOXL7x5pt61m5syp29R4GL09ZuyR/77zwf9a7z5ttjndxvlz19vMX+8yd73N/PUuc9e7xmruZs2aPqr93D69af4hyfNKKevCuJRyVJLba603jtVFa63XpPNFXheP1TVgqDMOPDNT+qest21K/5TMm3PaOI0IAAC2HCvFm6DWuqKUcmiS80opO6fzPv44ySs247RDb59OkoOH2e+MJP9ZSjmk1vqVzbgejMor9j0id999n2+fBgDgYWnCwIDva3o4uv/+NQPb0u0jbmfpXeaud5m73mb+epe5623mr3eZu941hrdP/zDJU0baz+3TAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDm2zB4quy/+X75JEf2yH7X75PFiy+aryHBAAAG6V/vAfwcFNKOSXJW5M8ttZ6TyllVpKLkkxPMi3JT5LMrbWuKqX8IskTaq33dI/9WJKn11qfPOh8C5P8Z631rd3Hj0jys1rrnlu9YLOeAAAgAElEQVTtRcEwFiy+KicunJtVq1clSZasuDknLpybJDls78PHc2gAADBqVoq3vFcl+WySl3cfvy3J12utB9Van5FkRZI3Dj2olDI1ybOS/LSUcuCQp19RSnn22A0ZNt5Zi05fF8RrrVq9KmctOn2cRgQAABvPSvEW1I3ZG9JZGf7bJPOT3JrkZaWUnyf5bpKTkwwMc/jhSb6R5B+THJ9k4aDnTkhycSnlj5KsHs1Y+vomZObMqZvyMsZEX9/EbWo8jN6G5m7piiXD7r90xRJzvY3w5663mb/eZe56m/nrXeaud4333IniLeuoJJfUWmsp5d5SygFJzkuyLJ0V46uTfCfJm5LcPMyxxyb5aZKPl1J2r7Uu7T73oySXJzk3yVtGM5A1awayfPndm/t6tpiZM6duU+Nh9DY0d7tPm50lK4b+a9zZbq63Df7c9Tbz17vMXW8zf73L3PWusZq7WbOmj2o/t09vIaWUHZO8MMkJpZSvJtkhnRXf5yS5vNb6/CS7Jfl+kr8ecuwTk+yb5MNJrklnJXnoLdZnJ/nDJAeP4cuAUZs357RM6Z+y3rYp/VMyb85p4zQiAADYeKJ4y3lVkku7nx1+QZIDkhyU5KQkRyRJrfXeJP+V5N4hxx6VZF6t9QXdY5+T5PWllMlrd6i1rklyZDorzzDuDtv78Jx74AWZPW2PTMiEzJ62R8498AJfsgUAQE9x+/SWc1SSV699UGu9u5SyIMmSJC8tpbw1yaoktyU5btBxk5O8Ip1V4LXH/ncp5UdJXjb4At3bss9L59utYdwdtvfhIhgAgJ42YWBguO98otfdf/+agW3pMxU+49G7zF3vMne9zfz1LnPX28xf7zJ3vWsMP1P8wyRPGWk/t08DAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0SxQDAADQLFEMAABAs0QxAAAAzRLFAAAANEsUAwAA0CxRDAAAQLNEMQAAAM0SxQAAADRLFAMAANAsUQwAAECzRDEAAADNEsUAAAA0q380O5VSdk/ygSS7Jrk6yY9rrd8by4EBAADAWBvtSvHFST6VZFKSf05y/piNCAAAALaS0UbxlFrrN5MM1FprknvGcEwAAACwVYw2iu8ppTw/SV8pZU5EMQAAAA8Do43iY5K8LskuSU5OctyYjQgAAAC2ktFG8aokl9Za90myMMmyMRsRAAAAbCWjjeLPJtmu+/vfJvnbsRkOAAAAbD2jjeLta61fTpJa65VJpo7dkAAAAGDrGNXPKU5yXynleUkWJXlakgfGbkgAAACwdYx2pfioJG9O8v0kb0py7JiNCAAAALaSUa0U11p/nuQv1j4upTxqzEYEAAAAW8mooriUckaSNyaZnM7niRcn2WcMxwUAAABjbrS3Tx+aZHaSK5I8McnSMRsRAAAAbCWjjeJf11rvTTK9eyv15DEcEwAAAGwVo43iJaWU1ydZWUp5f5IdxnBMAAAAsFU85GeKSyn9SV6U5MokNyS5Oslb0/lMMQAAAPS0kb5o64okq5PsluTzSW5K50cynT/G4wIAAIAxN1IUP77W+pRSyuQkP0xyb5I/rbX+dOyHBgAAAGNrpM8U35kktdb7uvseJIgBAAB4uBjtF20lya211t+O2UgAAABgKxvp9ul9SilXJpkw6PdJklrrEWM6MgAAABhjI0Xx4YN+f9FYDgQAAAC2toeM4lrrt7fWQAAAAGBr25jPFAMAAMDDiigGAACgWaIYAACAZoliAAAAmiWKAQAAaJYoBgAAoFmiGAAAgGaJYgAAAJoligEAAGiWKAYAAKBZohgAAIBmiWIAAACaJYoBAABoligGAACgWaIYAACAZoliAAAAmiWKAQAAaJYoBgAAoFmiGAAAgGaJYgAAAJoligEAAGiWKAYAAKBZohgAAIBmiWIAAACaJYoBAABoligGAACgWaIYAACAZoliAAAAmiWKAQAAaJYoBgAAoFmiGAAAgGaJYgAAAJoligEAAGiWKAYAAKBZohgAAIBmiWIAAACaJYoBAABoligGAACgWaIYAACAZoliAAAAmiWKAQAAaJYoBgAAoFmiGAAAgGaJYgAAAJoligEAAGiWKAYAAKBZohgAAIBmiWIAAACaJYoBAABoligGAACgWaIYAACAZoliAAAAmiWKAQAAaJYoBgAAoFmiGAAAgGaJYgAAAJoligEAAGiWKAYAAKBZohgAAIBmiWIAAACaJYoBAABoligGAACgWaIYAACAZoliAAAAmiWKAQAAaJYoBgAAoFmiGAAAgGaJYgAAAJoligEAAGiWKAYAAKBZohgAAIBmiWIAAACaJYoBAABoligGAACgWaIYAACAZoliAAAAmiWKAQAAaJYoBgAAoFmiGAAAgGaJYgAAAJoligEAAGiWKAYAAKBZ/eM9gG1BKeXAJG+stb580Lazk/wsydm11t1KKVOSfDzJo5NMTXJLkmNrrb8ppfwiyX8nWZPOXzT8JsmRtda7uuc6Jclbkzy21npPd9v8JDNqrS8ddM1butdaN55SysQkpyY5uHv+gSRvqbVeN0ZvBwAAD2HB4qty1qLTs3TFkuw+bXbmzTkth+19+HgPC9hEVopH73VJbqm1HlRrfVaS7yR5z6DnD6q1/mmt9dlJru/uv9arknw2ycuzvmeVUl49wnVPSbJLkmfXWg/sPv6HUsqkTX8pAABsigWLr8qJC+dmyYqbM5CBLFlxc05cODcLFl813kMDNpEoHr1bkxxUSjm0lDIjyQVJThq6UyllQpKZSVZ0Hx+Y5IYkFyV585Dd35Hk9FLK7Ie47jFJzqi1PpAktdYfJHlqrfX+zXs5AABsrLMWnZ5Vq1ett23V6lU5a9Hp4zQiYHO5ffp3nlNKWTjo8eMyaCW41rqglDKQ5A1J5ie5Lsnc7j+T5J9KKWtvb/5+ksu7249KckmttZZS7i2lHFBr/V73uaVJ3p3k0iTP38C4ptZalw3eUGv9zUgvpq9vQmbOnDrSbltNX9/EbWo8jJ65613mrreZv95l7nrbSPO3dMWSDW437+PLn73eNd5zJ4p/55vDfKY4gx4/Pck3aq1/X0rpS/LqdOL4j7q7HLT288KDjtkxyQuT7FpKmZtkhyTHJ1kbxam1XlFKeUkp5bgNjGtZKWVGrfXOQed9SXcsd27gmKxZM5Dly+8e8UVvLTNnTt2mxsPombveZe56m/nrXeaut400f7tPm50lK24edrt5H1/+7PWusZq7WbOmj2o/t0+P3iuSnJAktdY1SX6c5N4RjnlVkku7n0N+QZID0rkFe9aQ/Y5LcnKS4WbtsiSndW/LTinlGUnOTXLPMPsCADCG5s05LVP6p6y3bUr/lMybc9o4jQjYXKJ49OYleXwp5dpSyneTnJ3OrdQP5agkn177oNZ69/9v7/6DLa/rOo6/LrsmS0tuPxAnIXEy3v2YIslRSrMtE03HcmKGHIsyS9IxB6XMhIyYZMYfRSn+qDQtrSZIsqkmFcpIMzYMzX6QH/LHFNho/ghpZdNluf1xzrUr3csu7F7O+fJ+PGaYPfd7vufez9n3fHf3eb7fc0hyeZKnrd9pjPHxJOdm9qnWt/fSzOL76qp6Z5IXJvneMcbn7uoTAQDgrjnj5DNz8e5LcsLOE7OSlZyw88RcvPsSnz4NE7ayurq66DWwBfbvP7C6TJePuJxlusxuusxu2sxvusxu2sxvusxuurbw8ulrkzzkYPs5UwwAAEBbohgAAIC2RDEAAABtiWIAAADaEsUAAAC0JYoBAABoSxQDAADQligGAACgLVEMAABAW6IYAACAtkQxAAAAbYliAAAA2hLFAAAAtCWKAQAAaEsUAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLZEMQAAAG2JYgAAANoSxQAAALQligEAAGhLFAMAANCWKAYAAKAtUQwAAEBbohgAAIC2RDEAAABtiWIAAADaEsUAAAC0JYoBAABoSxQDAADQligGAACgLVEMAABAW6IYAACAtkQxAAAAbYliAAAA2hLFAAAAtCWKAQAAaEsUAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLZEMQAAAG2JYgAAANoSxQAAALQligEAAGhLFAMAANCWKAYAAKAtUQwAAEBbohgAAIC2RDEAAABtiWIAAADaEsUAAAC0JYoBAABoSxQDAADQligGAACgLVEMAABAW6IYAACAtkQxAAAAbYliAAAA2hLFAAAAtCWKAQAAaEsUAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLZEMQAAAG2JYgAAANoSxQAAALQligEAAGhLFAMAANCWKAYAAKAtUQwAAEBbohgAAIC2RDEAAABtiWIAAADaEsUAAAC0JYoBAABoSxQDAADQligGAACgLVEMAABAW6IYAACAtkQxAAAAbYliAAAA2hLFAAAAtCWKAQAAaEsUAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLZEMQAAAG2JYgAAANoSxQAAALQligEAAGhLFAMAANCWKAYAAKAtUQwAAEBbohgAAIC2RDEAAABtiWIAAADaEsUAAAC0JYoBAABoSxQDAADQligGAACgLVEMAABAW6IYAACAtkQxAAAAbYliAAAA2hLFAAAAtCWKAQAAaEsUAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLZEMQAAAG2JYgAAANoSxQAAALQligEAAGhLFAMAANCWKAYAAKAtUQwAAEBbohgAAIC2RDEAAABtiWIAAADaEsUAAAC0JYoBAABoSxQDAADQligGAACgLVEMAABAW6IYAACAtkQxAAAAbYliAAAA2hLFAAAAtCWKAQAAaEsUAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLZEMQAAAG2JYgAAANoSxQAAALQligEAAGhLFAMAANCWKAYAAKAtUQwAAEBbohgAAIC2RDEAAABtiWIAAADaEsUAAAC0JYoBAABoSxQDAADQligGAACgLVEMAABAW6IYAACAtkQxAAAAbYliAAAA2hLFAAAAtCWKAQAAaEsUAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLZEMQAAAG2JYgAAANoSxQAAALQligEAAGhLFAMAANCWKAYAAKAtUQwAAEBbohgAAIC2RDEAAABtiWIAAADaEsUAAAC0JYoBAABoSxQDAADQligGAACgLVEMAABAW6IYAACAtkQxAAAAbYliAAAA2hLFAAAAtCWKAQAAaEsUAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLZEMQAAAG2JYgAAANoSxQAAALQligEAgKV0+fWX5dQ3fEOOf9V9cuobviGXX3/ZopfEPdD2RS9gyqrqL5I8f4xxTVV9UZKPJ3nhGOOl8/uvSvLNSU4bY7x/vu3oJO8fY5xUVb+Q5KNJPpPkx5IcneTrk7xn/iN+MMm7kvx7ktvW/eifGmNcu8VPDwAAFuby6y/LuVc9K/tu3ZckuXHvDTn3qmclSc44+cxFLo17GFF8eK5M8u1Jrpn/+rYkj0vy0nn8PiDJ+w72TcYYb0zyxqo6KcnvjzF2r91XVUly+hjjf4704gEAYFldtOfCzwfxmn237stFey4UxRxRovjwXJnkBUl+ObMYfm2SF1fVfZKcmuSvkpy0iIVt27aSXbuOWcSP3tC2bUct1Xo4dGY3XWY3beY3XWY3bea3PD6y98ZNt280I7ObrkXPThQfnvcm+dqqWknyyCTnJfnzJN+d5JuSvDXJ05O8oapumT/mrryP+4qqWrt8+sAY41EHe8CBA6u56aZbDrbb3WbXrmOWaj0cOrObLrObNvObLrObNvNbHvffeUJu3HvDhts3mpHZTddWze644449pP180NZhGGPcltnl0Y9N8tExxmeTvCXJw5M8IskV811/eIyxe35Z9Ol34Uedvvb4QwliAACYuvNPuyA7tu/4gm07tu/I+addsKAVcU8lig/flZmdIX7L/Ou/zuzS6aPGGJ9a2KoAAGDCzjj5zFy8+5KcsPPErGQlJ+w8MRfvvsT7iTniXD59+K5M8pokZyXJGONzVXVTkr8/gj9j/eXTSfKyMcabj+D3BwCApXPGyWeKYLbcyurq6qLXwBbYv//A6jK9p8J7PKbL7KbL7KbN/KbL7KbN/KbL7KZrC99TfG2ShxxsP5dPAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLZEMQAAAG2JYgAAANoSxQAAALQligEAAGhLFAMAANCWKAYAAKAtUQwAAEBbohgAAIC2RDEAAABtiWIAAADaEsUAAAC0JYoBAABoSxQDAADQligGAACgLVEMAABAW6IYAACAtkQxAAAAbYliAAAA2hLFAAAAtCWKAQAAaEsUAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLZEMQAAAG2JYgAAANoSxQAAALQligEAAGhLFAMAANCWKAYAAKAtUQwAAEBbohgAAIC2RDEAAABtiWIAAADaEsUAAAC0JYoBAABoSxQDAADQligGAACgLVEMAABAW6IYAACAtkQxAAAAbYliAAAA2hLFAAAAtCWKAQAAaEsUAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLZEMQAAAG2JYgAAANoSxQAAALQligEAAGhLFAMAANCWKAYAAKAtUQwAAEBbohgAAIC2RDEAAABtiWIAAADaEsUAAAC0JYoBAABoSxQDAADQligGAACgLVEMAABAW6IYAACAtkQxAAAAbYliAAAA2hLFAAAAtCWKAQAAaEsUAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLZEMQAAAG2JYgAAANoSxQAAALQligEAAGhLFAMAANCWKAYAAKAtUQwAAEBbohgAAIC2RDEAAABtiWIAAADaEsUAAAC0JYoBAABoSxQDAADQligGAACgLVEMAABAW6IYAACAtkQxAAAAbYliAAAA2hLFAAAAtCWKAQAAaEsUAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLZEMQAAAG2JYgAAANoSxQAAALQligEAAGhLFAMAANCWKAYAAKAtUQwAAEBbohgAAIC2RDEAAABtiWIAAADaEsUAAAC0JYoBAABoSxQDAADQligGAACgLVEMAABAW6IYAACAtkQxAAAAbYliAAAA2hLFAAAAtCWKAQAAaEsUAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLZEMQAAAG2JYgAAANoSxQAAALQligEAAGhLFAMAANCWKAYAAKAtUQwAAEBbohgAAIC2RDEAAABtiWIAAADaEsUAAAC0JYoBAABoSxQDAADQligGAACgLVEMAABAW6IYAACAtkQxAAAAbYliAAAA2hLFAAAAtCWKAQAAaEsUAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLZEMQAAAG2JYgAAANoSxQAAALQligEAAGhLFAMAANCWKAYAAKAtUQwAAEBbohgAAIC2RDEAAABtiWIAAADaEsUAAAC0JYoBAABoSxQDAADQligGAACgLVEMAABAW6IYAACAtkQxAAAAbYliAAAA2hLFAAAAtCWKAQAAaEsUAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLZEMQAAAG2JYgAAANoSxQAAALQligEAAGhLFAMAANCWKAYAAKAtUQwAAEBbohgAAIC2RDEAAABtiWIAAADaEsUAAAC0JYoBAABoSxQDAADQligGAACgLVEMAABAW6IYAACAtkQxAAAAbW1f9AKmrKp2J7ksyXVJVpLcO8kzkpyT5PfHGG/d4DFnJnl9kq8ZY/zHuu1PnD9uJcmOJC8dY7ypqp6S5GvHGD873++cJD+Q5PFjjP/aumcHAACwucuvvywX7bkwH9l7Y+6/84Scf9oFOePkMxe9rDtNFB++t48xnpQkVXV6kl9M8ok72P9pSV6e5OwkvzB/3LcleU5mobu3qr48yZ6qum79A6vquUkek+TRY4zPHOknAgAAcCguv/6ynHvVs7Lv1n1Jkhv33pBzr3pWkkwujF0+fWR9aZL/3OzOqnpgki9L8uIkZ1XVveZ3PS3Jr44x9ibJGOOTSR6a5F/WPfb8JN+VWTgLYgAAYGEu2nPh54N4zb5b9+WiPRcuaEV3nTPFh++7quqqzC6dPiXJE5M8eZN9fyzJ68YYN1XV1Um+P8mlSb4yyYfW77h2aXRVJckPJvnXzKJ75VAWtW3bSnbtOubOPpcts23bUUu1Hg6d2U2X2U2b+U2X2U2b+U2X2d29PrL3xk2339k5LHp2ovjwrb98upJcneTK2+9UVduS/FCSD1fVEzI7Y/yTmUXxvyU5Mcn71u3/8CQfm3/53sxi+yVJXpHkxw+2qAMHVnPTTbfc9Wd1hO3adcxSrYdDZ3bTZXbTZn7TZXbTZn7TZXZ3r/vvPCE37r1hw+13dg5bNbvjjjv2kPZz+fSR9bE7uO9xSd49xvjOMcZjxxgPTXJ8VX1TZh+89dyq+uIkqar7zretvVxy3RjjtiTnJXlwVZ21dU8BAADgjp1/2gXZsX3HF2zbsX1Hzj/tggWt6K5zpvjwrV0+fSDJsUnOTbI7ycur6ub5PmN+32tv99jXJvnJMcbZVfUbSa6sqv2Zffr088cY/1BVp67tPMb4XFU9Ock7quraMcZ1AQAAuJutfZjWPeHTp1dWV1cXvQa2wP79B1aX6fIRl7NMl9lNl9lNm/lNl9lNm/lNl9lN1xZePn1tkoccbD+XTwMAANCWKAYAAKAtUQwAAEBbohgAAIC2RDEAAABtiWIAAADaEsUAAAC0JYoBAABoSxQDAADQligGAACgLVEMAABAW6IYAACAtkQxAAAAbYliAAAA2hLFAAAAtCWKAQAAaEsUAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLZEMQAAAG2JYgAAANoSxQAAALQligEAAGhLFAMAANCWKAYAAKAtUQwAAEBbohgAAIC2RDEAAABtiWIAAADaEsUAAAC0JYoBAABoSxQDAADQligGAACgLVEMAABAW6IYAACAtkQxAAAAbYliAAAA2hLFAAAAtCWKAQAAaEsUAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLZEMQAAAG2trK6uLnoNbI2PJ/m3RS8CAABgQR6Q5LiD7SSKAQAAaMvl0wAAALQligEAAGhLFAMAANCWKAYAAKAtUQwAAEBb2xe9AO65quqoJK9KckqSzyb58THGBxa7KjZSVe9JcvP8yw8n+fUkL0tya5IrxhgXmufyqaqHJXnxGGN3VT0oyW8lWU3yT0meOca4raouSPL4zGb57DHGNZvtu4jn0NXtZvfgJH+a5F/nd796jHGp2S2XqrpXktclOSnJvZO8MMl1cdxNwibzuyGOvaVXVduSvCZJZfb7//Qk/xPH3iRsMr97ZcmOPWeK2UpPTHL0GONbk/xskl9e8HrYQFUdnWRljLF7/t+PJvm1JE9O8ogkD5v/o908l0hV/UyS1yY5er7p4iQ/N8b49iQrSb6vqk5N8h1JHpbkSUleudm+d+fau9tgdt+S5OJ1x+ClZreUfijJJ+e/949N8oo47qZko/k59qbhCUkyxnh4kp9LclEce1Oy0fyW7tgTxWylRyR5a5KMMfYkechil8MmTklyTFVdUVVvr6pHJrn3GOODY4zVJG9L8t0xz2XzwSTfv+7rb0nyV/Pbb8n/zeyKMcbqGOPfk2yvquM22Ze7z0aze3xVvaOqfrOqjo3ZLaM/SPKC+e2VzM5kOO6mY7P5OfaW3Bjjj5KcPf/yAUluimNvMu5gfkt17IlittKXJPn0uq8PVJVL9pfPLUl+KcljMruk5fXzbWv+O8l9Yp5LZYxxeZL96zatzF/ESDaf2dr2jfblbrLB7K5J8twxxiOTfCjJBTG7pTPG2DvG+O/5P97elNkZD8fdRGwyP8feRIwxbq2q305ySZLfjWNvUjaY39Ide6KYrXRzkmPXfX3UGOPWRS2GTV2f5Hfmr8xdn9kfSF+27v5jM3tVzzyX2/r312w2s7XtG+3L4rx5jHHt2u0kD47ZLaWqOjHJXyZ54xjj9+K4m5QN5ufYm5Axxo8kOTmz96fuWHeXY28Cbje/K5bt2BPFbKV3JXlcklTVaUn+cbHLYRNPzfz9wVX1lUmOSfKZqvrqqlrJ7AzyO2Oey+69VbV7fvt78n8ze0xVHVVVX5XZCxmf2GRfFudtVfXQ+e1HJbk2Zrd0qur4JFcked4Y43XzzY67idhkfo69Caiqs6rq+fMvb8kskv7OsTcNm8zvD5ft2HPpI1vpzUkeXVV/k9n7d350wethY7+Z5Leq6q8z+2S/p2b2B9bvJtmW2at5f1tV7455LrOfSvKaqvqiJP+S5E1jjANV9c4kV2f2IugzN9t3EQvm856R5JKq2p/ko0nOHmPcbHZL57wkX5rkBVW19t7Uc5K83HE3CRvN79wkv+LYWxdLvTUAAAIjSURBVHp/mOT1VfWOzD61+NmZzcDfedOw0fxuyJL9vbeyurp68L0AAADgHsjl0wAAALQligEAAGhLFAMAANCWKAYAAKAtUQwAAEBbohgA+H+qandVfbqqTly37UVV9ZS7+P1Oqqo9R2yBAHCEiGIAYDOfzez/L7my6IUAwFbZvugFAABL6+2ZvYD+zCSvWNtYVXvGGKet3U7ypCRPSfKgJF+R5MuTvDLJGUlOTvIjST6a5Liq+uMkxyf50zHGL87PRP9Gkh1J9iU5O8m2JH+S5JNJ/myM8ZItf6YAtOVMMQBwR56R5DlV9aBD2HffGOOxSS5P8rgxxhOSvCizaE6SnUnOSvJtSb6nqk5J8ktJXj7G2D2//aL5vvdLcrogBmCriWIAYFNjjE8meXaS387G/25Yf2n1e+a/3pTkuvnt/0py9Pz2+8YYnx5jHEhyTWZnkb8xyXlVdVWSn8/sLHKSfHiM8bkj9TwAYDOiGAC4Q2OMP0kyMrtE+n5J7ltV26pqV5IHrtt19SDf6uuqamdVbU/ysCT/nOT9SZ43P1P8E0n+YL7vbUfuGQDA5rynGAA4FM9O8qjM3ht8ZZJ3J/lgkg/cie/xqSSXJjkuyaVjjOuq6qeTvLqqjs7sfcXnHNFVA8BBrKyuHuxFXQAAALhncvk0AAAAbYliAAAA2hLFAAAAtCWKAQAAaEsUAwAA0JYoBgAAoC1RDAAAQFuiGAAAgLb+Fw6pa8Uy+R6EAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"---------------------------------------\n",
"Aggregated count of Violations by GENDER\n",
" Gender Count\n",
"0 M 7065\n",
"1 F 2932\n",
"2 U 3\n"
]
},
{
"data": {
"image/png":...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here