Problems 1. (a) State the definition of the derivative. (b) What is the graphical interpretation of the derivative? (c) What is the equation of the line tangent to y = g(x) at x = x1? 2. Compute the...

1 answer below »
quiz


Problems 1. (a) State the definition of the derivative. (b) What is the graphical interpretation of the derivative? (c) What is the equation of the line tangent to y = g(x) at x = x1? 2. Compute the following limits. If the limit does not exist, analyze its one-sided limits, and determine if the limit approaches ∞, −∞, or neither. (a) lim x→−5 −3x2 − 1 2x+ 5 (b) lim θ→ 1 2 πθ (c) lim x→3 x2 − 9 |x− 3| (d) lim x→2 10− 10 √ 3− x x− 2 (e) lim h→0 √√√√ 12 − 1√4 + h h (f) lim x→−3 1 9 + 1 x2 x+ 3 (g) lim x→2 (x+ 1)3 − 27 x− 2 (h) lim x→3 (2x+ |x− 3|) (i) lim x→0 ( 1 x − 1 |x| ) (j) lim x→7 exp ( x2 − 5x− 14 x2 − 11x+ 28 ) 3. Find the domain of the following functions. Analyze the limits at points outside the domain, splitting into one-sided limits as necessary. (a) g1(x) = x2 + 3x− 10 x2 + 2x− 15 (b) g2(x) = x2 − x x4 − x3 4. True / False. Justify your answerr: if the answer is false, provide a counter example (or explain why its false); otherwise, write a couple words or a sentence describing why its true). (a) If f(s) = f(t) then s = t. (b) If f and g are functions then f ◦ g = g ◦ f . 1 (c) lim x→4 ( 2x x− 4 − 8 x− 4 ) = lim x→4 ( 2x x− 4 ) − lim x→4 ( 8 x− 4 ) . (d) If lim x→5 f(x) = 2 and lim x→5 g(x) = 0, then lim x→5 f(x) g(x) does not exist. (e) If lim x→5 f(x) = 0 and lim x→5 g(x) = 0, then lim x→5 f(x) g(x) does not exist. (f) If g(1) = −1 and g(2) = 5 then there exists a number c between 1 and 2 such that g(c) = 0. (g) If 1 ≤ f(x) ≤ x2 + 2x+ 2 for all x near −1, then lim x→−1 f(x) = 1. (h) If the line x = 1 is a vertical asymptote of y = f(x), then f(1) does not exist. 5. Determine the constant c that makes f continuous on (−∞,∞). f(x) = { c2 + sin (xπ) if x < 2="" cx2="" −="" 4="" if="" x="" ≥="" 2="" .="" 6.="" find="" a="" value="" of="" b="" so="" that="" l="lim" x→−2="" 3x2="" +="" bx+="" b+="" 3="" x2="" +="" x−="" 2="" exists.="" then="" find="" l.="" 7.="" consider="" the="" function="" f(x)="9−" 4e2x="" e2x="" −="" 2ex="" −="" 3="" (a)="" find="" the="" equation="" of="" all="" horizontal="" asymptotes.="" (b)="" find="" the="" equation="" of="" all="" vertical="" asymptotes.="" (c)="" analyze="" the="" one-sided="" limits="" at="" the="" vertical="" asymptotes.="" 8.="" in="" the="" theory="" of="" relativity,="" the="" lorentz="" contraction="" formula="" l="L0" √="" 1−="" v2/c2="" expresses="" the="" length="" l="" of="" an="" object="" as="" a="" function="" of="" its="" velocity="" v="" with="" respect="" to="" an="" observer,="" where="" l0="" is="" the="" length="" of="" the="" object="" at="" rest="" and="" c="" is="" the="" speed="" of="" light.="" find="" lim="" v→c−="" l="" and="" interpret="" the="" result.="" why="" is="" a="" left-hand="" limit="" necessary?="" 9.="" evaluate="" lim="" x→2="" √="" 6−="" x−="" 2√="" 3−="" x−="" 1="" 10.="" (precalculus="" review.)="" solve="" for="" x.="" 2="" (a)="" lnx+="" ln(x−="" 1)="1" (b)="" 2x−5="43x+7" 11.="" (precalculus="" review.)="" find="" the="" inverse="" of="" the="" following="" invertible="" functions:="" (a)="" f(x)="2" +="" x="" 1−="" x="" .="" (b)="" g(x)="3ex" 1="" +="" 2ex="" 12.="" prove="" lim="" x→−∞="" ex="" cos(x)="0." 13.="" prove="" log="" x="x−" 3="" has="" a="" solution.="" hint:="" recall="" log(x)="log1" 0(x).="" 14.="" prove="" that="" f(x)="" is="" not="" continuous="" at="" x="−3." then,="" determine="" whether="" f(x)="" is="" continuous="" from="" the="" left,="" continuous="" from="" the="" right,="" or="" neither="" at="" x="−3." f(x)="" x2="" +="" 4x+="" 3="" x+="" 3="" if="" x="">< −3="" −2="" if="" x="−3" x+="" 5="" if="" x=""> −3 15. Suppose the displacement function of a particle is given by s(t) = √ t7 for t > 0. (a) Using the limit definition of the derivative, compute the velocity function. (b) Compute the acceleration function using the definition of the derivative. 16. For which a, b ∈ R is the function f(x) =  √ 1− x− 1 ax if x ∈ (0, 1] 1 if x = 0 bx4 + bx x2 + x if x ∈ (−1, 0) continuous on (−1, 1]? 17. Compute the following limits. (a) lim x→∞ ( √ x2 + ax− √ x2 + bx) (b) lim x→−∞ ( √ x2 + ax− √ x2 + bx) 3 18. The graph of y = f(x) is given. On the same set of axes, sketch f ′(x). 19. Suppose f(x) = x3 + x− 8. Find the equation of the tangent line to f(x) at x = −1. 20. State f(x) = |x− 3| x− 3 as a piecewise function. Then show that lim x→3 f(x) does not exist by a) plotting f(x) and b) analytically. 21. Let f(x) = 1 x2 − x . (a) Calculate f ′(2) using the definition of the derivative. (b) Find the tangent line to the curve y = f(x) at the point x = 2. 22. Determine the value of c so that g(x) is continuous g(x) =  x2 − 9 x− 3 if x < 3="" cx−="" 5="" if="" x="" ≥="" 3="" 23.="" the="" gravitational="" force="" exerted="" by="" the="" earth="" on="" a="" unit="" mass="" at="" a="" distance="" r="" from="" the="" centre="" of="" the="" planet="" is="" f="" (r)="" gmr="" r3="" if="" r="">< r gm r2 if r ≥ r where m is the mass of the earth, r is its radius, and g is the gravitational constant. is f a continuous function of r? 24. challenging problem. find a formula for a function f that satisfies the following conditions: (a) lim x→±∞ f(x) = 0 (b) lim x→0 f(x) = −∞ 4 (c) f(2) = 0 (d) lim x→3− f(x) =∞ (e) lim x→3+ f(x) = −∞ 5 solutions 1 (a) f ′(x) = lim h→0 f(x+ h)− f(x) h (b) slope of tangent line (c) y = g′(x1)(x− x1) + g(x1) 2 (a) -74/5 (b) √ π (c) lhl -6 rhl 6 (d) 5 (e) 1/4 (f) lhl −∞ rhl ∞ (g) 19 (h) 6 (i) lhl −∞ rhl 0 (j) e3 3 3 4 (a,b,c,e,f,h) are false; (d,g) are true. remark: i’ve double-checked these and i am confident there are no typos. 5 c = 2 6 b = 15 l = −1 7 (a) y = −7 (b) x = ln 3 (c) lhl =∞ rhl = −∞ vertical asymptote is x = ln 2; horizontal asymptote is y = −3 8 l→ 0+ 9 hint: rationalize relentlessly. answer: 1/2. 10 11 (a) f−1(x) = x− 2 1 + 3x (b) g−1(x) = ln ( x 3− 2x ) 12 hint: use squeeze theorem. 13 hint: use the intermediate value theorem. 14 continuous from the left. 15 16 a = −1/2, b = 1 17 (a) a− b 2 (b) b− a 2 18 19 20 (b) hint: split into left- and right- hand limits. 21 y = 2− 3x/4 22 c = 11/3 23 hint: state the definition of continuity for f (r) at r = r. yes, f (r) is continuous. 24 one solution is f(x) = −(x− 2)/x2(x− 3) 6 r="" gm="" r2="" if="" r="" ≥="" r="" where="" m="" is="" the="" mass="" of="" the="" earth,="" r="" is="" its="" radius,="" and="" g="" is="" the="" gravitational="" constant.="" is="" f="" a="" continuous="" function="" of="" r?="" 24.="" challenging="" problem.="" find="" a="" formula="" for="" a="" function="" f="" that="" satisfies="" the="" following="" conditions:="" (a)="" lim="" x→±∞="" f(x)="0" (b)="" lim="" x→0="" f(x)="−∞" 4="" (c)="" f(2)="0" (d)="" lim="" x→3−="" f(x)="∞" (e)="" lim="" x→3+="" f(x)="−∞" 5="" solutions="" 1="" (a)="" f="" ′(x)="lim" h→0="" f(x+="" h)−="" f(x)="" h="" (b)="" slope="" of="" tangent="" line="" (c)="" y="g′(x1)(x−" x1)="" +="" g(x1)="" 2="" (a)="" -74/5="" (b)="" √="" π="" (c)="" lhl="" -6="" rhl="" 6="" (d)="" 5="" (e)="" 1/4="" (f)="" lhl="" −∞="" rhl="" ∞="" (g)="" 19="" (h)="" 6="" (i)="" lhl="" −∞="" rhl="" 0="" (j)="" e3="" 3="" 3="" 4="" (a,b,c,e,f,h)="" are="" false;="" (d,g)="" are="" true.="" remark:="" i’ve="" double-checked="" these="" and="" i="" am="" confident="" there="" are="" no="" typos.="" 5="" c="2" 6="" b="15" l="−1" 7="" (a)="" y="−7" (b)="" x="ln" 3="" (c)="" lhl="∞" rhl="−∞" vertical="" asymptote="" is="" x="ln" 2;="" horizontal="" asymptote="" is="" y="−3" 8="" l→="" 0+="" 9="" hint:="" rationalize="" relentlessly.="" answer:="" 1/2.="" 10="" 11="" (a)="" f−1(x)="x−" 2="" 1="" +="" 3x="" (b)="" g−1(x)="ln" (="" x="" 3−="" 2x="" )="" 12="" hint:="" use="" squeeze="" theorem.="" 13="" hint:="" use="" the="" intermediate="" value="" theorem.="" 14="" continuous="" from="" the="" left.="" 15="" 16="" a="−1/2," b="1" 17="" (a)="" a−="" b="" 2="" (b)="" b−="" a="" 2="" 18="" 19="" 20="" (b)="" hint:="" split="" into="" left-="" and="" right-="" hand="" limits.="" 21="" y="2−" 3x/4="" 22="" c="11/3" 23="" hint:="" state="" the="" definition="" of="" continuity="" for="" f="" (r)="" at="" r="R." yes,="" f="" (r)="" is="" continuous.="" 24="" one="" solution="" is="" f(x)="−(x−" 2)/x2(x−="" 3)="">
Answered 1 days AfterJun 08, 2021

Answer To: Problems 1. (a) State the definition of the derivative. (b) What is the graphical interpretation of...

Faiza answered on Jun 09 2021
158 Votes
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here