Price IndPrice PriceDif AdvExp Demand X1 X2 X4 X3 Y 3.85 3.80 -0.05 5.50 7.38 3.75 4.00 0.25 6.75 8.51 3.70 4.30 0.60 7.25 9.52 3.70 3.70 0.00 5.50 7.50 3.60 3.85 0.25 7.00 9.33 3.60 3.80 0.20 6.50...


Price<br>IndPrice PriceDif<br>AdvExp Demand<br>X1<br>X2<br>X4<br>X3<br>Y<br>3.85<br>3.80<br>-0.05<br>5.50<br>7.38<br>3.75<br>4.00<br>0.25<br>6.75<br>8.51<br>3.70<br>4.30<br>0.60<br>7.25<br>9.52<br>3.70<br>3.70<br>0.00<br>5.50<br>7.50<br>3.60<br>3.85<br>0.25<br>7.00<br>9.33<br>3.60<br>3.80<br>0.20<br>6.50<br>8.28<br>3.60<br>3.75<br>0.15<br>6.75<br>8.75<br>3.80<br>3.85<br>0.05<br>5.25<br>7.87<br>3.80<br>3.65<br>-0.15<br>5.25<br>7.10<br>3.85<br>4.00<br>0.15<br>6.00<br>8.00<br>3.90<br>4.10<br>0.20<br>6.50<br>7.89<br>3.90<br>4.00<br>0.10<br>6.25<br>8.15<br>3.70<br>4.10<br>0.40<br>7.00<br>9.10<br>3.75<br>4.20<br>0.45<br>6.90<br>8.86<br>3.75<br>4.10<br>0.35<br>6.80<br>8.90<br>3.80<br>4.10<br>0.30<br>6.80<br>8.87<br>3.70<br>4.20<br>0.50<br>7.10<br>9.26<br>3.80<br>4.30<br>0.50<br>7.00<br>9.00<br>3.70<br>4.10<br>0.40<br>6.80<br>8.75<br>3.80<br>3.75<br>-0.05<br>6.50<br>7.95<br>3.80<br>3.75<br>-0.05<br>6.25<br>7.65<br>3.75<br>3.65<br>-0.10<br>6.00<br>7.27<br>3.70<br>3.90<br>0.20<br>6.50<br>8.00<br>3.55<br>3.65<br>0.10<br>7.00<br>8.50<br>3.60<br>4.10<br>0.50<br>6.80<br>8.75<br>3.65<br>4.25<br>0.60<br>6.80<br>9.21<br>3.70<br>3.65<br>-0.05<br>6.50<br>8.27<br>3.75<br>3.75<br>0.00<br>5.75<br>7.67<br>3.80<br>3.85<br>0.05<br>5.80<br>7.93<br>3.70<br>4.25<br>0.55<br>6.80<br>9.26<br>

Extracted text: Price IndPrice PriceDif AdvExp Demand X1 X2 X4 X3 Y 3.85 3.80 -0.05 5.50 7.38 3.75 4.00 0.25 6.75 8.51 3.70 4.30 0.60 7.25 9.52 3.70 3.70 0.00 5.50 7.50 3.60 3.85 0.25 7.00 9.33 3.60 3.80 0.20 6.50 8.28 3.60 3.75 0.15 6.75 8.75 3.80 3.85 0.05 5.25 7.87 3.80 3.65 -0.15 5.25 7.10 3.85 4.00 0.15 6.00 8.00 3.90 4.10 0.20 6.50 7.89 3.90 4.00 0.10 6.25 8.15 3.70 4.10 0.40 7.00 9.10 3.75 4.20 0.45 6.90 8.86 3.75 4.10 0.35 6.80 8.90 3.80 4.10 0.30 6.80 8.87 3.70 4.20 0.50 7.10 9.26 3.80 4.30 0.50 7.00 9.00 3.70 4.10 0.40 6.80 8.75 3.80 3.75 -0.05 6.50 7.95 3.80 3.75 -0.05 6.25 7.65 3.75 3.65 -0.10 6.00 7.27 3.70 3.90 0.20 6.50 8.00 3.55 3.65 0.10 7.00 8.50 3.60 4.10 0.50 6.80 8.75 3.65 4.25 0.60 6.80 9.21 3.70 3.65 -0.05 6.50 8.27 3.75 3.75 0.00 5.75 7.67 3.80 3.85 0.05 5.80 7.93 3.70 4.25 0.55 6.80 9.26
Consider the demand for Fresh Detergent in a future sales period when Enterprise Industries' price for Fresh will be x1 = 3.70, the<br>average price of competitors' similar detergents will be x2 = 3.90, and Enterprise Industries' advertising expenditure for Fresh will be<br>x3 = 6.50. A 95 percent prediction interval for this demand is given on the following JMP output:<br>%3D<br>Predicted<br>Lower 95%<br>Upper 95%<br>Mean Demand<br>Upper 95%<br>Indiv Demand<br>StdErr<br>Lower 95%<br>Demand<br>Mean Demand<br>Indiv Demand<br>Indiv Demand<br>31<br>8.4106503477<br>8.3143172822<br>8.5069834132<br>0.2393033103<br>7.9187553487<br>8.9025453468<br>E Click here for the Excel Data File;<br>(a) Find and report the 95 percent prediction interval on the output. If Enterprise Industries plans to have in inventory the number of<br>bottles implied by the upper limit of this interval, it can be very confident that it will have enough bottles to meet demand for Fresh in<br>the future sales period. How many bottles is this? If we multiply the number of bottles implied by the lower limit of the prediction<br>interval by the price of Fresh ($3.70), we can be very confident that the resulting dollar amount will be the minimal revenue from Fresh<br>in the future sales period. What is this dollar amount? (Round 95% PI to 4 decimal places, Lower dollar amount and Level of<br>inventory needed to the nearest whole number.)<br>95% PI [<br>Level of inventory needed =<br>bottles<br>Lower dollar amount =<br>(b) Calculate a 99 percent prediction interval for the demand for Fresh in the future sales period. Use the fact that StdErr Indiv Demand<br>equals s(1 + distance value)5. (Round your answers to 4 decimal places.)<br>99% PI [<br>

Extracted text: Consider the demand for Fresh Detergent in a future sales period when Enterprise Industries' price for Fresh will be x1 = 3.70, the average price of competitors' similar detergents will be x2 = 3.90, and Enterprise Industries' advertising expenditure for Fresh will be x3 = 6.50. A 95 percent prediction interval for this demand is given on the following JMP output: %3D Predicted Lower 95% Upper 95% Mean Demand Upper 95% Indiv Demand StdErr Lower 95% Demand Mean Demand Indiv Demand Indiv Demand 31 8.4106503477 8.3143172822 8.5069834132 0.2393033103 7.9187553487 8.9025453468 E Click here for the Excel Data File; (a) Find and report the 95 percent prediction interval on the output. If Enterprise Industries plans to have in inventory the number of bottles implied by the upper limit of this interval, it can be very confident that it will have enough bottles to meet demand for Fresh in the future sales period. How many bottles is this? If we multiply the number of bottles implied by the lower limit of the prediction interval by the price of Fresh ($3.70), we can be very confident that the resulting dollar amount will be the minimal revenue from Fresh in the future sales period. What is this dollar amount? (Round 95% PI to 4 decimal places, Lower dollar amount and Level of inventory needed to the nearest whole number.) 95% PI [ Level of inventory needed = bottles Lower dollar amount = (b) Calculate a 99 percent prediction interval for the demand for Fresh in the future sales period. Use the fact that StdErr Indiv Demand equals s(1 + distance value)5. (Round your answers to 4 decimal places.) 99% PI [
Jun 07, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here