Position, Velocity, Acceleration Rectangular Coordinate: i = xỉ + yj + zk ü = v,i + v,j + v,k = xi + ÿj + żk a = a,i + a,j + a,k = xï + ÿj+ žk Projectile Motion a = -gj v = vĩ + v,j = voxī+(-gt +...


I attached a formula sheet of the only formulas that can be used to solve problems. Will leave a vote!


Position, Velocity, Acceleration<br>Rectangular Coordinate:<br>i = xỉ + yj + zk<br>ü = v,i + v,j + v,k = xi + ÿj + żk<br>a = a,i + a,j + a,k = xï + ÿj+ žk<br>Projectile Motion<br>a = -gj<br>v = vĩ + v,j = voxī+(-gt + voy)j<br>Kinematic Equations for Two Points on the Same<br>Rigid Body:<br>%3D<br>/A<br>Pure Rolling:<br>vc = rw; ac = ra, consistent with the rolling direction;<br>v¡ = 0; a¡ = rw² toward C<br>7 = xĩ + yỹ = (Voxt + xo)ï + (–gt2 + voyt + Yo)j Eq. of Motion for a Rigid Body in Planar Motion:<br>1<br>gt²<br>ΣF -<br>Tangent and Normal Coordinate:<br>* = 7(s)<br>i = vũ; = sū;<br>à = a,ū, + a„īn = šū, +ūn<br>= māg<br>ΣΜ 1ς α<br>ΣΜΟ-10α<br>EMQ = Iga + (Fc/ × mãc),<br>= lọa + (Tc/Q × māo), Q: any point<br>G: mass center<br>O: pivot point or instantaneous center<br>213/2<br>1+]<br>|d²y|<br>p =<br>Kinetic Energy of a Rigid Body<br>dx2<br>T =mv,² +Igw²<br>2<br>Cylindrical Coordinate:<br>= rū, + zū,<br>v = v,ũ, + vgũg + v,ū, = rū, + rôūo + żū,<br>à = a,ūr + agūg + azūz<br>= (* – rô?)ũ, + (rö + 2řė)ūg + žū,<br>T =<br>Work Done on a Rigid Body<br>- [ Fds + f Mdo<br>U =<br>Newton's Second Law:<br>2F = mã<br>Work-Energy Principle:<br>T; +U.-2 = T2<br>1<br>kinetic energy: T =<br>mv²<br>work done: U =<br>F• dr<br>*work of the force exerted by a spring:<br>U1-2 = k(sỉ – s3)<br>*work of the force exerted by friction:<br>U1-2 = -fd<br>Conservative Force Field:<br>T1 + Vị = T2 + V2<br>T: kinetic energy<br>V:potential energy<br>

Extracted text: Position, Velocity, Acceleration Rectangular Coordinate: i = xỉ + yj + zk ü = v,i + v,j + v,k = xi + ÿj + żk a = a,i + a,j + a,k = xï + ÿj+ žk Projectile Motion a = -gj v = vĩ + v,j = voxī+(-gt + voy)j Kinematic Equations for Two Points on the Same Rigid Body: %3D /A Pure Rolling: vc = rw; ac = ra, consistent with the rolling direction; v¡ = 0; a¡ = rw² toward C 7 = xĩ + yỹ = (Voxt + xo)ï + (–gt2 + voyt + Yo)j Eq. of Motion for a Rigid Body in Planar Motion: 1 gt² ΣF - Tangent and Normal Coordinate: * = 7(s) i = vũ; = sū; à = a,ū, + a„īn = šū, +ūn = māg ΣΜ 1ς α ΣΜΟ-10α EMQ = Iga + (Fc/ × mãc), = lọa + (Tc/Q × māo), Q: any point G: mass center O: pivot point or instantaneous center 213/2 1+] |d²y| p = Kinetic Energy of a Rigid Body dx2 T =mv,² +Igw² 2 Cylindrical Coordinate: = rū, + zū, v = v,ũ, + vgũg + v,ū, = rū, + rôūo + żū, à = a,ūr + agūg + azūz = (* – rô?)ũ, + (rö + 2řė)ūg + žū, T = Work Done on a Rigid Body - [ Fds + f Mdo U = Newton's Second Law: 2F = mã Work-Energy Principle: T; +U.-2 = T2 1 kinetic energy: T = mv² work done: U = F• dr *work of the force exerted by a spring: U1-2 = k(sỉ – s3) *work of the force exerted by friction: U1-2 = -fd Conservative Force Field: T1 + Vị = T2 + V2 T: kinetic energy V:potential energy
The crank arm AB tums about z axis thrdugh its pinned end A with the clockwise angular velocity w = 3 rad/s<br>and counterclockwise angular acceleration a = 2 rad/s² at the instant shown. The block C slides in the vertical<br>track. At the given instant, determine (a) position vector, îa/a, and velocity and acceleration at point B, vg and<br>äg, (b) position vector, ře/B, velocity at point C, vc, and angular velocity of the link BC, ögc, and (c)<br>acceleration at point C, år, and angular acceleration of the link BC, đgc.<br>B<br>30°<br>*50<br>3 m<br>o- 3 rad's<br>a-2 zad v<br>A<br>(7] (a) řbya =<br>(10] (b) ře/u =<br>[8] (c) âc =<br>

Extracted text: The crank arm AB tums about z axis thrdugh its pinned end A with the clockwise angular velocity w = 3 rad/s and counterclockwise angular acceleration a = 2 rad/s² at the instant shown. The block C slides in the vertical track. At the given instant, determine (a) position vector, îa/a, and velocity and acceleration at point B, vg and äg, (b) position vector, ře/B, velocity at point C, vc, and angular velocity of the link BC, ögc, and (c) acceleration at point C, år, and angular acceleration of the link BC, đgc. B 30° *50 3 m o- 3 rad's a-2 zad v A (7] (a) řbya = (10] (b) ře/u = [8] (c) âc =
Jun 11, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here