Please refer to Problem 27.4. How long will it take for the concentration of benzene at the clay barrier (depth of 1 m) to reach 1 g/m 3 , the toxicity limit? You might find that the concentration...


Please refer to Problem 27.4. How long will it take for the concentration of benzene at the clay barrier (depth of 1 m) to reach 1 g/m3, the toxicity limit? You might find that the concentration charts are difficult to read accurately at this concentration. Therefore, consider the analytical solution and implement the calculations on a computer spreadsheet. Be aware that the diffusion process may take a long time.


Problem 27.4


Liquid benzene, C6H6, a common industrial solvent with a density of 0.88 g/cm3, leaked from a storage tank and seeped into the ground below. As the density of benzene is less than the density of water, the liquid benzene formed a light nonaqueousphase liquid layer on top of the water-saturated soil, as shown below. At a depth of 1 m below the water-saturated soil layer is a nonporous, impermeable rock layer. There is no groundwater flow through the water-saturated soil layer, it is completely stagnant.


We are interested in the transport of benzene into the water-saturated soil layer, so that we may identify how much soil must be dug up and treated. Although the water-saturated soil is complex mixture, as a medium for benzene diffusion you may assume that it approximates the properties of a homogeneous substance.


At relatively short times or relatively small penetration depths, a finite-dimensional diffusion medium can be approximated by a semi-infinite diffusion medium. Calculate the concentration of the dissolved benzene at a position of 5 cm into the water-saturated soil layer after 72 h of benzene spill. Liquid benzene is sparingly soluble in water, and its solubility limit is 24 mol/m3
at 293 K. The effective diffusion coefficient of benzene in the water-saturated soil is
 at 293 K. Initially, there is no benzene dissolved in the water-saturated soil layer. The pure liquid benzene layer resting on top of the soil is essentially a constant source due to the low solubility of benzene in water. Finally, you may assume that benzene does not diffuse into the nonporous rock layer.

Nov 23, 2021
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here