Prices NameS&P/ASX 50 Indexa2 Milk Co Ltd/TheAGL Energy LtdAmpol LtdAristocrat Leisure LtdAmcor PLC Step 1: Calculate daily log returns (ignore non trading days) Step 2: Evaluate the statistics...

1 answer below »
Please read carefully the project file details. It has all the important information regarding the assignment. The page limit is 5pages for the assignment which does not inclues cover page and references. The main part and the appendix is included in the page limit. The Excel file has to be submitted separately. I have attached some.of the example files and hints that my faculty has provided.


Prices NameS&P/ASX 50 Indexa2 Milk Co Ltd/TheAGL Energy LtdAmpol LtdAristocrat Leisure LtdAmcor PLCStep 1: Calculate daily log returns (ignore non trading days)Step 2: Evaluate the statistics CodeASX50A2MAGLALDALLAMCASX50A2MAGLALDALLAMC DatesDatesASX50A2MAGLALDALLAMC 1/1/191/1/19daily SD0.5558%2.1331%1.1746%1.5406%1.7578%0.6787% 1/2/195483.110.420.325.1721.0613.271/2/19daily mean0.1742%0.4422%0.1146%0.0664%0.2487%0.2430% 1/3/195560.110.520.3825.3921.413.281/3/190.01394545930.0095694510.00393314170.00870258660.01601541530.0007532957annulised SD8.8230%33.8626%18.6467%24.4565%27.9045%10.7741% 1/4/195557.910.120.6525.7121.513.181/4/19-0.0003957546-0.03883983330.01316129160.01252462560.0046620131-0.007558615annulised mean43.8965%111.4309%28.8817%16.7263%62.6719%61.2286% 1/5/191/5/19 1/6/191/6/19 1/7/195606.710.4820.6925.8921.9113.371/7/190.00874197210.0369332550.00193517240.00697677250.01889021850.014312862Correlation (You may use the correlation function in data analysis tool pack) 1/8/195643.610.5120.8726.2622.6213.191/8/190.00655984860.0028585060.00866222930.01419007510.0318913171-0.0135544244ASX50A2MAGLALDALLAMC 1/9/195693.510.820.8826.3423.2613.251/9/190.00880301350.02721894920.00047904190.00304182740.02790067640.0045385857ASX5010.06379374650.0872795020.09035950590.36456027470.1232318107 1/10/19571510.821.0226.5123.0913.351/10/190.00376912400.00668260240.006433324-0.00733552370.0075188324A2M0.06379374651-0.4465182098-0.13793916770.16417395640.1884730738 1/11/195695.810.7121.1626.6123.2513.351/11/19-0.0033652361-0.00836824970.00663824150.00376506470.00690550870AGL0.087279502-0.446518209810.11079964110.20685782230.025312158 1/12/191/12/19ALD0.0903595059-0.13793916770.11079964111-0.06182874350.0137843714 1/13/191/13/19ALL0.36456027470.16417395640.2068578223-0.061828743510.1165066378 1/14/195694.610.7921.226.5123.0813.41/14/19-0.00021070380.00744189480.0018885747-0.0037650647-0.00733869040.0037383221AMC0.12323181070.18847307380.0253121580.01378437140.11650663781 1/15/195734.5911.2121.2626.2723.3613.361/15/190.00699789980.03818645780.0028261912-0.00909441660.0120587163-0.0029895388 1/16/195753.411.4221.1226.4523.913.41/16/190.00327472720.0185599671-0.00660691410.00682855460.0228533010.0029895388Var-Cov Matrix (By border matrix method) 1/17/195765.611.8420.726.423.5313.361/17/190.00211824020.0361174252-0.0200867586-0.0018921482-0.0156022562-0.0029895388ASX50A2MAGLALDALLAMC 1/18/195789.211.7520.926.2823.5613.391/18/190.0040848882-0.00763038890.0096154587-0.00455581650.0012741560.00224299168.8230%33.8626%18.6467%24.4565%27.9045%10.7741% 1/19/191/19/19ASX508.8230%0.00778454220.0019059670.00143591930.0019497780.00897554120.0011714453 1/20/191/20/19A2M33.8626%0.0019059670.1146677955-0.0281942893-0.01142360350.01551314170.0068762665 1/21/195798.611.7520.9526.8624.3113.441/21/190.001622396300.00238948740.02182999750.03133742950.0037271754AGL18.6467%0.0014359193-0.02819428930.03476982380.00505282650.01076336220.0005085259 1/22/19576011.8120.8926.5824.6413.51/22/19-0.00667903440.0050933896-0.0028680708-0.01047913780.01348335030.0044543503ALD24.4565%0.001949778-0.01142360350.00505282650.0598121725-0.00421949010.0003632155 1/23/195749.211.7921.0626.3324.2113.51/23/19-0.00187676-0.00169491570.0081049311-0.0094500798-0.01760536770ALL27.9045%0.00897554120.01551314170.0107633622-0.00421949010.07786629760.0035027415 1/24/195776.411.721.4426.6624.3913.621/24/190.0047199366-0.00766287270.01788282950.01245534120.00740744130.0088496153AMC10.7741%0.00117144530.00687626650.00050852590.00036321550.00350274150.0116082113 1/25/195815.111.6621.6626.7124.613.681/25/190.0066773315-0.00342466090.01020890540.00187371240.00857323070.0043956115 1/26/191/26/19risk-free rate0.50% 1/27/191/27/19 1/28/191/28/19Global Minimum Variance Portfolio 1/29/195786.311.6221.5826.6524.2113.581/29/19-0.0049649282-0.0034364295-0.0037002817-0.0022488765-0.015980672-0.00733679011-vectorRelative WeightsWeights 1/30/195807.811.5821.6326.9524.1613.541/30/190.0037087872-0.00344827930.00231428010.0111941467-0.0020673979-0.00294985461A2M14.42529658230.1001451208 1/31/195768.812.0821.4226.8424.6313.651/31/19-0.0067377550.0422717204-0.0097561749-0.00408998530.01926683910.00809125411AGL36.25613928090.2517019616 2/1/195767.212.2121.5627.1824.4113.792/1/19-0.00027739250.01070409560.0065146810.0125880966-0.00897232770.01020417021ALD16.13135250980.1119891183 2/2/192/2/191ALL2.46795266710.0171333335 2/3/192/3/191AMC74.76318715410.5190304659 2/4/195795.812.0921.827.9224.513.852/4/190.0049468232-0.00987662350.01107022380.02686186920.00368023310.0043415408 2/5/195925.212.1721.9827.6424.713.862/5/190.02208092440.00659524240.0082229792-0.0100792790.00813012610.0007217611Portfolio Variance0.0069423266 2/6/195936.912.4322.1627.5725.6314.062/6/190.00197266990.02113899850.0081559129-0.00253577390.03696029670.0143268926Portfolio SD8.33% 2/7/196005.812.5421.127.4725.314.262/7/190.01153855740.0088106297-0.0490158214-0.0036337249-0.01295914460.0141245286Portfolio Mean53.16% 2/8/195990.612.4721.3527.2924.614.292/8/19-0.0025340949-0.00559777550.0117786992-0.0065741654-0.02805795280.002101577Sharpe Ratio6.32 2/9/192/9/19 2/10/192/10/19Optimum portfolio 2/11/195977.712.8421.3727.2324.4914.562/11/19-0.00215569550.02923953860.0009363297-0.002201028-0.0044815720.0187180508mu_i-r_f vectorRelative WeightsWeights 2/12/195989.712.7821.8227.6724.9414.632/12/190.0020054488-0.00468384930.02083891110.01602948710.01820806930.0047961723110.9309%A2M10.81725088890.1426198542 2/13/195963.51321.8527.525.4214.82/13/19-0.00438377040.01706790850.0013739411-0.00616278910.01906332550.011552965728.3817%AGL15.2047947720.2004673495 2/14/195957.512.7421.8127.7925.0114.662/14/19-0.001006627-0.0202027073-0.00183234130.0104902391-0.0162605209-0.009504484316.2263%ALD3.35818501390.0442759313 2/15/19596412.2522.0528.0624.7614.742/15/190.0010904669-0.03922071320.01094402170.0096688309-0.01004629710.005442190362.1719%ALL1.90501909770.0251166908 2/16/192/16/1960.7286%AMC44.56148942130.5875201742 2/17/192/17/19 2/18/195991.412.6822.0428.2324.8114.742/18/190.00458371080.034500012-0.00045361760.00604016760.00201734990Portfolio Variance0.0078407868 2/19/196014.912.3422.0628.2524.8714.852/19/190.0039146165-0.02717993050.00090702950.00070821530.00241546010.0074349785Portfolio SD8.85% 2/20/195999.313.6421.3127.824.6414.852/20/19-0.00259692840.1001606339-0.0345895677-0.0160574369-0.00929111910Portfolio Mean59.97% 2/21/196048.414.121.3827.6725.59152/21/190.00815097850.0331681450.0032794595-0.00468722690.03783051150.0100503359Sharpe Ratio6.72 2/22/196068.913.9321.5327.0425.9314.912/22/190.0033835953-0.01213000960.0069914058-0.02303154260.0131989494-0.0060180723 2/23/192/23/19Efficient Frontier 2/24/192/24/19W_GMVW_OptSDMean 2/25/19608514.0521.4127.6125.6915.032/25/190.00264935690.008577608-0.00558920880.0208607748-0.00929878840.008016075-100%200%0.10264583460.667843388 2/26/196025.414.1121.3328.925.0515.022/26/19-0.00984285920.0042613701-0.00374357010.0456635692-0.0252279836-0.0006655574-90%190%0.10092456540.6610288605 2/27/196046.613.9821.2928.825.1914.952/27/190.0035122634-0.0092560291-0.0018770536-0.0034662080.0055732628-0.0046713465-80%180%0.09926397950.654214333 2/28/196070.613.7721.2128.624.6215.052/28/190.0039613164-0.0151354241-0.0037647103-0.0069686693-0.02288796960.0066666914-70%170%0.09766717240.6473998055 3/1/196094.213.8521.3827.2225.1814.953/1/190.00388005220.00579291990.007983137-0.04945472060.0224909079-0.0066666914-60%160%0.09613732210.640585278 3/2/193/2/19-50%150%0.09467767450.6337707505 3/3/193/3/19-40%140%0.09329152480.626956223 3/4/196112.314.0721.1527.425.2214.753/4/190.00296563520.0157596385-0.01081600010.00659101620.0015873019-0.0134682171-30%130%0.09198219580.6201416955 3/5/196100.614.2721.4527.5824.8414.753/5/19-0.00191600740.01411456040.01408473990.006547859-0.01518207350-20%120%0.09075301260.613327168 3/6/196147.414.1621.6328.2424.4314.783/6/190.0076421012-0.00773834320.00835659460.0236485403-0.01664337180.0020318327-10%110%0.08960727350.6065126405 3/7/196167.314.0521.972824.8314.933/7/190.0032319126-0.00779869250.0155966464-0.00853490240.01624071430.0100976960%100%0.08854821750.599698113 3/8/19610714.0421.9327.6624.1414.93/8/19-0.0098254866-0.0007119972-0.001822324-0.0122171839-0.0281823839-0.002011398610%90%0.08757898940.5928835855 3/9/193/9/1920%80%0.08670260180.586069058 3/10/193/10/1930%70%0.08592189550.5792545305 3/11/196081.513.8721.7927.5923.6514.83/11/19-0.0041842782-0.0121821643-0.0064044135-0.002533938-0.0205071007-0.006734032240%60%0.08523949970.572440003 3/12/196075.213.7921.8327.3523.1414.893/12/19-0.0010364656-0.00578454250.0018340216-0.0087368594-0.02180039320.006062665950%50%0.08465779160.5656254755 3/13/196065.813.7621.9727.3322.9214.83/13/19-0.0015484724-0.00217785930.0063927158-0.0007315289-0.0095528299-0.006062665960%40%0.08417885880.558810948 3/14/196078.513.7221.7827.3522.9414.833/14/190.0020915169-0.0029112102-0.00868576890.00073152890.00087221990.002024975470%30%0.08380446320.5519964205 3/15/196073.313.422.0827.7923.1914.853/15/19-0.0008558403-0.02359991530.01368010390.01595971490.01083903960.001347709180%20%0.08353601050.545181893 3/16/193/16/1990%10%0.08337452390.5383673655 3/17/193/17/19100%0%0.08332062550.531552838 3/18/196089.913.3221.8628.5523.6214.823/18/190.0027295466-0.0059880418-0.01001373870.02698069230.0183726595-0.0020222454110%-10%0.08337452390.5247383105 3/19/196085.613.1521.9327.5424.6314.823/19/19-0.0007063365-0.01284490650.0031970797-0.03601744280.04187140140120%-20%0.08353601050.517923783 3/20/196068.313.1122.1526.6124.2214.963/20/19-0.0028468248-0.00304646080.0099819341-0.0343524083-0.0167864740.0094023527130%-30%0.08380446320.5111092555 3/21/196074.813.3421.9826.5324.4114.993/21/190.00107056690.0173917427-0.0077045475-0.00301091680.00781414630.0020033396140%-40%0.08417885880.504294728 3/22/19611013.4122.0426.4924.8215.193/22/190.00577770630.00523365680.0027260353-0.00150886490.01665689540.0132540045150%-50%0.08465779160.4974802006 3/23/193/23/19160%-60%0.08523949970.4906656731 3/24/193/24/19170%-70%0.08592189550.4838511456 3/25/196052.613.3421.7425.9824.3715.213/25/19-0.0094388414-0.0052336568-0.0137051026-0.019440292-0.01829691210.0013157897180%-80%0.08670260180.4770366181 3/26/196048.513.4421.9225.8424.6315.213/26/19-0.00067762440.00746829460.0082455804-0.00540333230.01061234450190%-90%0.08757898940.4702220906 3/27/19605613.4821.6125.6424.3415.233/27/190.00123920870.0029717704-0.0142432916-0.0077700469-0.01184412460.0013140606200%-100%0.08854821750.4634075631 3/28/196094.213.5521.962624.2215.363/28/190.00628798310.00517944180.01606644610.013942906-0.00494234940.0084995608 3/29/196097.813.6221.7726.2124.5115.393/29/190.00059055120.0051527534-0.00868974140.00804447930.01190245940.0019512201 3/30/193/30/19 3/31/193/31/19 Efficient Frontier Mean0.102645834605297530.100924565351645689.9263979492207222E-29.7667172383817377E-29.6137322106877407E-29.467767448518645E-29.329152476819412E-29.1982195803516617E-29.0753012620565857E-28.9607273467006782E-28.8548217487894779E-28.757898940948293E-28.6702601779297062E-28.5921895511113081E-28.5239499674482716E-28.4657791637272634E-28.4178858798714007E-28.3804463222539788E-28.3536010480465536E-28.3374523936134717E-28.3320625536369972E-28.3374523936134717E-28.3536010480465536E-28.3804463222539788E-28.4178858798714007E-28.4657791637272634E-28.5239499674482702E-28.5921895511113094E-28.6702601779297048E-28.757898940948293E-28.8548217487894779E-20.667843388019147550.661028860520423980.654214333021700290.64739980552297660.640585278024253250.633770750525529560.626956223026805870.62014169552808240.613327168029358720.606512640530635250.599698113031911560.592883585533187980.58606905803446430.579254530535740610.572440003037017140.565625475538293570.558810948039569880.55199642054084630.545181893042122720.538367365543399150.531552838044675570.524738310545951990.51792378304722830.511109255548504730.504294728049781150.497480200551057520.490665673052333990.483851145553610420.477036618054886730.470222090556163150.46340756305743952SD Mean Prices NameS&P/ASX 50 Indexa2 Milk Co Ltd/TheAGL Energy LtdAmpol LtdAristocrat Leisure LtdAmcor PLCAustralia & New Zealand BankinAPA GroupAfterpay LtdASX LtdAurizon Holdings LtdBHP Group LtdBrambles LtdCommonwealth Bank of AustraliaCochlear LtdColes Group LtdComputershare LtdCSL LtdDexusFortescue Metals Group LtdGoodman GroupGPT Group/TheInsurance Australia Group LtdJames Hardie Industries PLCLendlease Corp LtdMirvac GroupMedibank Pvt LtdMacquarie Group LtdNational Australia Bank LtdNewcrest Mining LtdOrigin Energy LtdOrica LtdQantas Airways LtdQBE Insurance Group LtdRamsay Health Care LtdRio Tinto LtdSouth32 LtdScentre GroupStocklandSonic Healthcare LtdSantos LtdSuncorp Group LtdSydney AirportTransurban GroupTelstra Corp LtdTreasury Wine Estates LtdWestpac Banking CorpWesfarmers LtdWoolworths Group LtdWoodside Petroleum LtdXero Ltd CodeASX50A2MAGLALDALLAMCANZAPAAPTASXAZJBHPBXBCBACOHCOLCPUCSLDXSFMGGMGGPTIAGJHXLLCMGRMPLMQGNABNCMORGORIQANQBERHCRIOS32SCGSGPSHLSTOSUNSYDTCLTLSTWEWBCWESWOWWPLXRO Dates 1/1/19 1/2/195483.110.420.325.1721.0613.2723.868.531259.584.2433.689.9870.97174.911.7117185.3810.524.1510.685.316.9114.9111.112.22.5106.8523.6321.716.3216.95.769.8557.7676.653.273.843.4521.85.2812.74976.483511.552.7714.6824.4831.5529.1530.4941.95 1/3/195560.110.520.3825.3921.413.2824.348.6611.9861.14.3133.6810.0671.84177.811.9917189.4510.574.210.725.337.0115.2511.542.212.54109.8323.9322.656.4717.035.7410.0657.8976.653.253.93.521.65.4913.04846.58111.592.8514.6725.0431.7529.3331.5442.09 1/4/195557.910.120.6525.7121.513.1824.258.9312.0860.674.2833.3810.0771.89175.3811.8116.63188.5310.584.310.785.416.9515.111.32.212.53109.4123.9823.536.6116.745.6910.0157.3276.833.283.923.4921.95.5512.65716.483511.62.8914.0225.0332.0829.331.9140.9 1/5/19 1/6/19 1/7/195606.710.4820.6925.8921.9113.3724.598.9312.9461.54.3334.3910.1572.57175.9911.7116.93187.510.594.4410.755.366.9115.1111.442.22.54110.5724.2223.386.7116.975.7910.2357.5478.93.373.883.4721.595.7912.65716.405511.592.8514.4125.2232.2229.632.3241.91 1/8/195643.610.5120.8726.2622.6213.1924.86913.1861.824.3534.4310.2472.4717811.7217.09189.9210.564.5310.735.336.8615.1711.832.222.54112.6724.4423.456.8617.275.910.425879.33.393.933.5121.955.7312.60566.38611.572.914.3625.5232.2229.6832.4243.52 1/9/195693.510.820.8826.3423.2613.2525.198.9713.661.864.3734.310.4372.33183.2611.8517.49195.110.564.6510.995.376.9315.211.922.262.58113.9824.5723.496.9417.396.1110.5258.280.023.443.5921.955.8112.65716.454211.672.9114.9625.7632.0229.833.1543.5 1/10/19571510.821.0226.5123.0913.3525.339.0713.762.224.3933.1410.4872.45184.6711.6617.38196.4710.794.5711.155.426.9915.311.652.282.56113.9524.623.96.9517.426.0710.4558.8180.133.434.063.6321.95.8512.74976.50311.842.8914.24525.8531.9729.8733.3743 1/11/195695.810.7121.1626.6123.2513.3525.249.1213.5362.044.3932.7910.5371.66184.0711.5317.25195.210.964.5811.375.487.0415.3311.772.32.58113.2124.5523.796.9917.35.9110.557.9279.653.44.073.6521.955.8412.56446.444511.782.9314.8525.6131.9529.6433.2642.66 1/12/19 1/13/19 1/14/195694.610.7921.226.5123.0813.425.379.0913.0562.314.432.7110.5171.92184.6811.8917.4194.3810.984.5211.315.497.0315.0712.042.292.57113.2824.6723.756.9117.285.9210.5558.3579.43.44.083.6521.645.8312.51296.483511.812.9214.425.7431.2629.7133.0842 1/15/195734.5911.2121.2626.2723.3613.3625.549.0513.5762.844.4133.0610.5172.65185.7911.7617.35197.9111.054.5511.55.537.1114.9411.922.292.59114.9824.7223.87.1317.375.9610.6557.64803.44.13.721.745.912.64686.46411.782.914.5625.7632.0829.6833.4642.35 1/16/195753.411.4221.1226.4523.913.425.759.0113.9263.114.432.9310.5872.55186.4511.8817.72197.2911.044.4711.495.537.1814.8712.062.32.6511624.823.447.1217.45610.8457.279.643.334.113.7322.255.9812.92486.473711.912.9314.682632.2930.0233.5242.95 1/17/195765.611.8420.726.423.5313.3625.948.9514.2563.284.3932.8710.5772.77187.5612.0818.05196.3811.144.5511.585.517.111511.912.32.65117.1824.8123.77.1617.536.0510.9357.8180.43.454.073.7122.466.0313.07936.434711.852.9214.7426.0732.2730.0433.7442.45 1/18/195789.211.7520.926.2823.5613.3926.078.9516.163.94.4233.1110.673.23189.1912.3218.21196.1911.124.6311.75.57.1915.1512.272.262.64118.224.8923.617.217.516.1510.9657.8180.653.414.063.722.696.0613.28536.249511.862.9215.3426.1532.529.9633.8942.13 1/19/19 1/20/19 1/21/195798.611.7520.9526.8624.3113.4426.198.8915.2564.334.4233.210.6773.05188.812.6617.86195.7811.114.7511.635.57.2715.2512.242.262.66117.6824.9123.217.2417.476.0811.0458.0780.513.394.053.7122.676.113.43986.26911.892.9315.526.232.7329.933.9442.24 1/22/19576011.8120.8926.5824.6413.525.818.9315.25644.432.7710.7372.18189.7712.7417.85195.711.184.6711.725.537.1915.1812.092.262.63116.3124.5923.057.217.476.1210.9757.9980.013.364.043.7322.786.0513.41926.26911.892.9215.525.7532.629.8933
Answered 7 days AfterApr 14, 2021

Answer To: Prices NameS&P/ASX 50 Indexa2 Milk Co Ltd/TheAGL Energy LtdAmpol LtdAristocrat Leisure...

Shakeel answered on Apr 21 2021
143 Votes
Markowitz’s mean-variance portfolio optimisation framework
In 1952, Markowitz propounded famous “Modern Portfolio Theory” where he discussed in detail the framework of assets allocation through the technique of Mean-variance Optimization. He asserted the Investor’s preference of maximum return over minimum risk and then, provided an effective tool of constructing the efficient frontier that is combination of all possible portfolios of max return at g
iven level of risk. This framework is based on certain assumptions that are as follows –
· Investors are risk averse and hence they prefer minimum risk for a given return or maximum return for a given level of risk. The degree of risk aversion changes from investor to investor.
· The expected return and risk profile of portfolio’s assets are known to investors in advance.
· It is assumed that returns on the assets are normally distributed and apart from returns, the variance and covariance matrix are needed to find the optimal portfolio.
· There is no transaction cost or tax imposed on purchasing or selling of assets.
Figure 1 shows the efficient frontier that is highlighted in blue. Portfolio on the efficient frontier yields maximum return over a particular level of risk. The whole graph is called Global minimum variance frontier that represents all possible portfolio made of the given assets in different proportion. Portfolios above the frontier are non-achievable while all portfolios below the frontier (as shown by red dots in figure) are not desirable.
Figure 1: Efficient frontier
Investors who can bear risk in a range have several alternatives of efficient portfolios on the efficient frontier and then it becomes crucial to find the optimal portfolio. Here the understanding OF Capital Market Line (CML) proves to be very helpful. CML is the line graph that shows the all possible combination of risk free assets and market portfolio (Lee, 2014). Risk free assets may be taken as T-bill while market portfolio is most diversified one that has only systematic risk. Hence, CML represents the optimal combination of risk and return of all such portfolio.
Figure 2: CML and efficient frontier
When CML becomes tangent to the efficient frontier, the tangency point represents optimal portfolio. At this point the Sharpe ratio of portfolio is highest and hence, investor gets highest reward for per unit of risk.
Risk-return profile of assets
Here, to construct a portfolio, 50 constituent stocks are taken and their daily closing prices are taken for the period Jan 2009 to Dec 2020.
The annual return and risk of all the 50 stocks are calculated that are given in Appendix 1. Stock APT has maximum annual return 63.71% while AGL stock has minimum annual return of -10.81%. As far as risk is concerned, APT stock has also the highest risk of 37.01% while WOW stock has minimum risk of 10.32%.
Global minimum variance portfolio
The Global min variance portfolio is a constructed by constituting 50 stocks and the risk, return and Sharpe ratio of such portfolio is as follows –
    Portfolio Variance
    0.0034953
    Portfolio SD
    5.91%
    Portfolio Mean
    0.58%
    Sharpe Ratio
    0.01
Portfolio yield 0.58% of annual return over the minimum risk level of 5.91%. Sharpe ratio is 0.01 which is very low.
Optimal portfolio
Optimal portfolio is so constructed having risk; return and Sharpe ratio are as follows –
    Portfolio Variance
    0.1816019
    Portfolio SD
    42.61%
    Portfolio Mean
    -8.93%
    Sharpe Ratio
    -0.22
The Optimal portfolio has Mean annual return of -8.93% and risk is 42.61%. Sharpe ratio is calculated at -0.22 which is low and negative.
Graph 1 shows the efficient frontier of portfolios containing risky assets only.
Graph 1: Efficient frontier
Graph 2 represents the efficient frontier of portfolios containing risky assets and risk free assets both.
Graph 2: Efficient frontier with risk free assets
(
A
)
Line AP is tangent at point P of the efficient frontier and hence, portfolio at point P represents the optimal portfolio that is the combination of risky assets portfolio and risk free assets.
The allocation of fund between risk free assets and risky portfolio depends upon the risk averse level of investor. As per the risk averse coefficient, the fund can be allocated between risky and risk free components. However, the weights to Global mean variance portfolio and Optimal portfolio is given in Appendix 4 table.
Practical implementation of portfolio
The practical implementation of such portfolio poses lots of difficulties. Few of them...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here