MITS5509 Assignment 3 MITS5509 Intelligent Systems for Analytics Assignment 3 MITS5509 Assignment 3 Copyright © XXXXXXXXXXVIT, All Rights Reserved. 2 NOTE: This Document is used in conjunction with...

1 answer below »

View more »
Answered Same DayOct 28, 2021MITS5509

Answer To: MITS5509 Assignment 3 MITS5509 Intelligent Systems for Analytics Assignment 3 MITS5509 Assignment 3...

Neha answered on Oct 29 2021
151 Votes
70150 - python classifier/code.py
from sklearn.ensemble import RandomForestClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.tree import DecisionTreeClassifier
import pandas as pd
import random
with open('training
.txt', 'r') as f:
data = f.read()
data = data.split('\n')
firm = [int(i) for i in data[0].split()[1:]]
wc = list(map(lambda x: float(x), data[2].split()[1:]))
dc = [float(i) for i in data[4].split()[1:]]
for i in data[6].split():
try:
firm.append(int(i))
except:
wc.append(float(i))
category = [ 1 for i in range(34)] + [0 for i in range(34)]
df_data = [
{
'firm': f,
'wc': w,
'dc': d,
'category': c
} for f, w, d, c in zip(firm, wc, dc, category)
]
df = pd.DataFrame().from_records(df_data)
df.head()
with open('testing.txt', 'r') as f:
data = f.read()
data = data.split('\n')
firm = [int(i) for i in data[0].split()[1:]]
wc = list(map(lambda x: float(x), data[2].split()[1:]))
dc = [float(i) for i in data[4].split()[1:]]
for i in data[6].split():
try:
firm.append(int(i))
except:
wc.append(float(i))
category = [1 for i in range(34)] + [0 for i in range(34)]
df_data = [
{
'firm': f,
'wc': w,
'dc': d,
'category': c
} for f, w, d, c in zip(firm, wc, dc, category)
]
df_test = pd.DataFrame().from_records(df_data)
df_test.head()
df_test.index = [ random.randint(1, 68) for i in range(68)]
df_test = df_test.sort_index()
df_test = pd.concat([df_test[df_test.category == 1].iloc[:20, :], df_test[df_test.category == 0].iloc[:20, :]])
df.index = [ random.randint(1, 68) for i in range(68)]
df = df.sort_index()
df_train = pd.concat([df[df.category == 1].iloc[:20, :], df[df.category == 0].iloc[:20, :]])
print ('Training Data')
print (df_train)
print ('Test Data')
print (df_test)
feature = df_train.iloc[:, 1:]
label = df_train['category']
dtc = DecisionTreeClassifier()
tree = dtc.fit(feature, label)
df_test['Decision_Tree'] = tree.predict(df_test.iloc[:, 1:4])
rfor = RandomForestClassifier()
forest= rfor.fit(feature, label)
df_test['Random_Forest'] = forest.predict(df_test.iloc[:, 1:4])

mlpc = MLPClassifier()
neural= mlpc.fit(feature, label)
df_test['Neural_Networks'] = neural.predict(df_test.iloc[:, 1:4])
df_test.to_csv('Final_Result.csv', index=False)
70150 - python...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here
April
January
February
March
April
May
June
July
August
September
October
November
December
2025
2025
2026
2027
SunMonTueWedThuFriSat
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30
07:00
07:30
08:00
08:30
09:00
09:30
10:00
10:30
11:00
11:30
12:00
12:30
13:00
13:30
14:00
14:30
15:00
15:30
16:00
16:30
17:00
17:30
18:00
18:30
19:00
19:30
20:00
20:30
21:00
21:30
22:00
22:30
23:00
23:30